Parkinson’s disease is the world’s fastest-growing neurological disorder. Research to elucidate the mechanisms of Parkinson’s disease and automate diagnostics would greatly improve the treatment of patients with Parkinson’s disease. Current diagnostic methods are expensive and have limited availability. Considering the insidious and preclinical onset and progression of the disease, a desirable screening should be diagnostically accurate even before the onset of symptoms to allow medical interventions. We highlight retinal fundus imaging, often termed a window to the brain, as a diagnostic screening modality for Parkinson’s disease. We conducted a systematic evaluation of conventional machine learning and deep learning techniques to classify Parkinson’s disease from UK Biobank fundus imaging. Our results suggest Parkinson’s disease individuals can be differentiated from age and gender-matched healthy subjects with 68% accuracy. This accuracy is maintained when predicting either prevalent or incident Parkinson’s disease. Explainability and trustworthiness are enhanced by visual attribution maps of localized biomarkers and quantified metrics of model robustness to data perturbations. 
                        more » 
                        « less   
                    
                            
                            A machine learning method to process voice samples for identification of Parkinson’s disease
                        
                    
    
            Abstract Machine learning approaches have been used for the automatic detection of Parkinson’s disease with voice recordings being the most used data type due to the simple and non-invasive nature of acquiring such data. Although voice recordings captured via telephone or mobile devices allow much easier and wider access for data collection, current conflicting performance results limit their clinical applicability. This study has two novel contributions. First, we show the reliability of personal telephone-collected voice recordings of the sustained vowel /a/ in natural settings by collecting samples from 50 people with specialist-diagnosed Parkinson’s disease and 50 healthy controls and applying machine learning classification with voice features related to phonation. Second, we utilize a novel application of a pre-trained convolutional neural network (Inception V3) with transfer learning to analyze the spectrograms of the sustained vowel from these samples. This approach considers speech intensity estimates across time and frequency scales rather than collapsing measurements across time. We show the superiority of our deep learning model for the task of classifying people with Parkinson’s disease as distinct from healthy controls. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1946391
- PAR ID:
- 10475403
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Babulal, Ganesh (Ed.)Digital voice recordings can offer affordable, accessible ways to evaluate behavior and function. We assessed how combining different low-level voice descriptors can evaluate cognitive status. Using voice recordings from neuropsychological exams at the Framingham Heart Study, we developed a machine learning framework fusing spectral, prosodic, and sound quality measures early in the training cycle. The model’s area under the receiver operating characteristic curve was 0.832 (±0.034) in differentiating persons with dementia from those who had normal cognition. This offers a data-driven framework for analyzing minimally processed voice recordings for cognitive assessment, highlighting the value of digital technologies in disease detection and intervention.more » « less
- 
            null (Ed.)Abstract With declining response rates and challenges of using RDD sampling for telephone surveys, collecting data from address-based samples has become more attractive. Two approaches are doing telephone interviews at telephone numbers matched to addresses and asking those at sampled addresses to call into an Interactive Voice Response (IVR) system to answer questions. This study used in-person interviewing to evaluate the effects of nonresponse and problems matching telephone numbers when telephone and IVR were used as the initial modes of data collection. The survey questions were selected from major US federal surveys covering a variety of topics. Both nonresponse and, for telephone, inability to find matches result in important nonresponse error for nearly half the measures across all topics, even after adjustments to fit the known demographic characteristics of the residents. Producing credible estimates requires using supplemental data collection strategies to reduce error from nonresponse.more » « less
- 
            Abstract BackgroundJoint acoustic emissions from knees have been evaluated as a convenient, non-invasive digital biomarker of inflammatory knee involvement in a small cohort of children with Juvenile Idiopathic Arthritis (JIA). The objective of the present study was to validate this in a larger cohort. FindingsA total of 116 subjects (86 JIA and 30 healthy controls) participated in this study. Of the 86 subjects with JIA, 43 subjects had active knee involvement at the time of study. Joint acoustic emissions were bilaterally recorded, and corresponding signal features were used to train a machine learning algorithm (XGBoost) to classify JIA and healthy knees. All active JIA knees and 80% of the controls were used as training data set, while the remaining knees were used as testing data set. Leave-one-leg-out cross-validation was used for validation on the training data set. Validation on the training and testing set of the classifier resulted in an accuracy of 81.1% and 87.7% respectively. Sensitivity / specificity for the training and testing validation was 88.6% / 72.3% and 88.1% / 83.3%, respectively. The area under the curve of the receiver operating characteristic curve was 0.81 for the developed classifier. The distributions of the joint scores of the active and inactive knees were significantly different. ConclusionJoint acoustic emissions can serve as an inexpensive and easy-to-use digital biomarker to distinguish JIA from healthy controls. Utilizing serial joint acoustic emission recordings can potentially help monitor disease activity in JIA affected joints to enable timely changes in therapy.more » « less
- 
            null (Ed.)Abstract Background Unified Parkinson Disease Rating Scale-part III (UPDRS III) is part of the standard clinical examination performed to track the severity of Parkinson’s disease (PD) motor complications. Wearable technologies could be used to reduce the need for on-site clinical examinations of people with Parkinson’s disease (PwP) and provide a reliable and continuous estimation of the severity of PD at home. The reported estimation can be used to successfully adjust the dose and interval of PD medications. Methods We developed a novel algorithm for unobtrusive and continuous UPDRS-III estimation at home using two wearable inertial sensors mounted on the wrist and ankle. We used the ensemble of three deep-learning models to detect UPDRS-III-related patterns from a combination of hand-crafted features, raw temporal signals, and their time–frequency representation. Specifically, we used a dual-channel, Long Short-Term Memory (LSTM) for hand-crafted features, 1D Convolutional Neural Network (CNN)-LSTM for raw signals, and 2D CNN-LSTM for time–frequency data. We utilized transfer learning from activity recognition data and proposed a two-stage training for the CNN-LSTM networks to cope with the limited amount of data. Results The algorithm was evaluated on gyroscope data from 24 PwP as they performed different daily living activities. The estimated UPDRS-III scores had a correlation of $$0.79\, (\textit{p}<0.0001)$$ 0.79 ( p < 0.0001 ) and a mean absolute error of 5.95 with the clinical examination scores without requiring the patients to perform any specific tasks. Conclusion Our analysis demonstrates the potential of our algorithm for estimating PD severity scores unobtrusively at home. Such an algorithm could provide the required motor-complication measurements without unnecessary clinical visits and help the treating physician provide effective management of the disease.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
