skip to main content


Title: Insights of warm-cloud biases in Community Atmospheric Model 5 and 6 from the single-column modeling framework and Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) observations

Abstract. There has been a growing concern that most climate models predict precipitation that is too frequent, likely due to lack of reliable subgrid variabilityand vertical variations in microphysical processes in low-level warm clouds.In this study, the warm-cloud physics parameterizations in the singe-columnconfigurations of NCAR Community Atmospheric Model version 6 and 5 (SCAM6and SCAM5, respectively) are evaluated using ground-based and airborneobservations from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Aerosol and Cloud Experiments in the EasternNorth Atlantic (ACE-ENA) field campaign near the Azores islands during2017–2018. The 8-month single-column model (SCM) simulations show that both SCAM6 and SCAM5 cangenerally reproduce marine boundary layer cloud structure, majormacrophysical properties, and their transition. The improvement in warm-cloud properties from the Community Atmospheric Model 5 and 6 (CAM5 to CAM6) physics can be found through comparison with the observations. Meanwhile, both physical schemes underestimate cloud liquidwater content, cloud droplet size, and rain liquid water content butoverestimate surface rainfall. Modeled cloud condensation nuclei (CCN)concentrations are comparable with aircraft-observed ones in the summer but areoverestimated by a factor of 2 in winter, largely due to the biases in thelong-range transport of anthropogenic aerosols like sulfate. We also testthe newly recalibrated autoconversion and accretion parameterizations thataccount for vertical variations in droplet size. Compared to theobservations, more significant improvement is found in SCAM5 than in SCAM6.This result is likely explained by the introduction of subgrid variationsin cloud properties in CAM6 cloud microphysics, which further suppresses thescheme's sensitivity to individual warm-rain microphysical parameters. Thepredicted cloud susceptibilities to CCN perturbations in CAM6 are within areasonable range, indicating significant progress since CAM5 which produces anaerosol indirect effect that is too strong. The present study emphasizes theimportance of understanding biases in cloud physics parameterizations bycombining SCM with in situ observations.

 
more » « less
Award ID(s):
2031751
NSF-PAR ID:
10475407
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
EGU
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
23
Issue:
15
ISSN:
1680-7324
Page Range / eLocation ID:
8591 to 8605
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This study uses cloud and radiative properties collected from in situ and remote sensing instruments during two coordinated campaigns over the Southern Ocean between Tasmania and Antarctica in January–February 2018 to evaluate the simulations of clouds and precipitation in nudged‐meteorology simulations with the CAM6 and AM4 global climate models sampled at the times and locations of the observations. Fifteen SOCRATES research flights sampled cloud water content, cloud droplet number concentration, and particle size distributions in mixed‐phase boundary layer clouds at temperatures down to −25°C. The 6‐week CAPRICORN2 research cruise encountered all cloud regimes across the region. Data from vertically pointing 94 GHz radars deployed was compared with radar simulator output from both models. Satellite data were compared with simulated top‐of‐atmosphere (TOA) radiative fluxes. Both models simulate observed cloud properties fairly well within the variability of observations. Cloud base and top in both models are generally biased low. CAM6 overestimates cloud occurrence and optical thickness while cloud droplet number concentrations are biased low, leading to excessive TOA reflected shortwave radiation. In general, low clouds in CAM6 precipitate at the same frequency but are more homogeneous compared to observations. Deep clouds are better simulated but produce snow too frequently. AM4 underestimates cloud occurrence but overestimates cloud optical thickness even more than CAM6, causing excessive outgoing longwave radiation fluxes but comparable reflected shortwave radiation. AM4 cloud droplet number concentrations match observations better than CAM6. Precipitating low and deep clouds in AM4 have too little snow. Further investigation of these microphysical biases is needed for both models.

     
    more » « less
  2. Abstract

    A framework is introduced to investigate the indirect effect of aerosol loading on tropical deep convection using three-dimensional limited-domain idealized cloud-system-resolving model simulations coupled with large-scale dynamics over fixed sea surface temperature. The large-scale circulation is parameterized using the spectral weak temperature gradient (WTG) approximation that utilizes the dominant balance between adiabatic cooling and diabatic heating in the tropics. The aerosol loading effect is examined by varying the number of cloud condensation nuclei (CCN) available to form cloud droplets in the two-moment bulk microphysics scheme over a wide range of environments from 30 to 5000 cm−3. The radiative heating is held at a constant prescribed rate in order to isolate the microphysical effects. Analyses are performed over the period after equilibrium is achieved between convection and the large-scale environment. Mean precipitation is found to decrease modestly and monotonically when the aerosol number concentration increases as convection gets weaker, despite the increase in cloud liquid water in the warm-rain region and ice crystals aloft. This reduction is traced down to the reduction in surface enthalpy fluxes as an energy source to the atmospheric column induced by the coupling of the large-scale motion, though the gross moist stability remains constant. Increasing CCN concentration leads to 1) a cooler free troposphere because of a reduction in the diabatic heating and 2) a warmer boundary layer because of suppressed evaporative cooling. This dipole temperature structure is associated with anomalously descending large-scale vertical motion above the boundary layer and ascending motion at lower levels. Sensitivity tests suggest that changes in convection and mean precipitation are unlikely to be caused by the impact of aerosols on cloud droplets and microphysical properties but rather by accounting for the feedback from convective adjustment with the large-scale dynamics. Furthermore, a simple scaling argument is derived based on the vertically integrated moist static energy budget, which enables estimation of changes in precipitation given known changes in surfaces enthalpy fluxes and the constant gross moist stability. The impact on cloud hydrometeors and microphysical properties is also examined, and it is consistent with the macrophysical picture.

     
    more » « less
  3. Abstract. Aerosols affect cirrus formation and evolution, yet quantificationof these effects remain difficult based on in situ observations due to thecomplexity of nucleation mechanisms and large variabilities in icemicrophysical properties. This work employed a method to distinguish fiveevolution phases of cirrus clouds based on in situ aircraft-basedobservations from seven U.S. National Science Foundation (NSF) and five NASAflight campaigns. Both homogeneous and heterogeneous nucleation werecaptured in the 1 Hz aircraft observations, inferred from the distributionsof relative humidity in the nucleation phase. Using linear regressions toquantify the correlations between cirrus microphysical properties andaerosol number concentrations, we found that ice water content (IWC) and icecrystal number concentration (Ni) show strong positive correlations withlarger aerosols (>500 nm) in the nucleation phase, indicatingstrong contributions of heterogeneous nucleation when ice crystals firststart to nucleate. For the later growth phase, IWC and Ni show similarpositive correlations with larger and smaller (i.e., >100 nm)aerosols, possibly due to fewer remaining ice-nucleating particles in thelater growth phase that allows more homogeneous nucleation to occur. Both200 m and 100 km observations were compared with the nudged simulations fromthe National Center for Atmospheric Research (NCAR) Community AtmosphereModel version 6 (CAM6). Simulated aerosol indirect effects are weaker thanthe observations for both larger and smaller aerosols for in situ cirrus,while the simulated aerosol indirect effects are closer to observations inconvective cirrus. The results also indicate that simulations overestimatehomogeneous freezing, underestimate heterogeneous nucleation andunderestimate the continuous formation and growth of ice crystals as cirrusclouds evolve. Observations show positive correlations of IWC, Ni and icecrystal mean diameter (Di) with respect to Na in both the Northern and SouthernHemisphere (NH and SH), while the simulations show negative correlations inthe SH. The observations also show higher increases of IWC and Ni in the SHunder the same increase of Na than those shown in the NH, indicating highersensitivity of cirrus microphysical properties to increases of Na in the SHthan the NH. The simulations underestimate IWC by a factor of 3–30 in theearly/later growth phase, indicating that the low bias of simulated IWC wasdue to insufficient continuous ice particle formation and growth. Sucha hypothesis is consistent with the model biases of lower frequencies of icesupersaturation and lower vertical velocity standard deviation in theearly/later growth phases. Overall, these findings show that aircraftobservations can capture both heterogeneous and homogeneous nucleation, andtheir contributions vary as cirrus clouds evolve. Future model developmentis also recommended to evaluate and improve the representation of watervapor and vertical velocity on the sub-grid scale to resolve theinsufficient ice particle formation and growth after the initial nucleationevent. 
    more » « less
  4. Aerosols affect cirrus formation and evolution, yet quantification of these effects remain difficult based on in-situ observations due to the complexity of nucleation mechanisms and large variabilities in ice microphysical properties. This work employed a method to distinguish five evolution phases of cirrus clouds based on in-situ aircraft-based observations from seven U.S. National Science Foundation (NSF) and five NASA flight campaigns. Both homogeneous and heterogeneous nucleation were captured in the 1-Hz aircraft observations, inferred from the distributions of relative humidity in the nucleation phase. Using linear regressions to quantify the correlations between cirrus microphysical properties and aerosol number concentrations, we found that ice water content (IWC) and ice crystal number concentration (Ni) show strong positive correlations with larger aerosols (> 500 nm) in the nucleation phase, indicating strong contributions of heterogeneous nucleation when ice crystals first start to nucleate. For the later growth phase, IWC and Ni show similar positive correlations with larger and smaller (i.e., > 100 nm) aerosols, possibly due to fewer remaining ice nucleating particles in the later growth phase that allows more homogeneous nucleation to occur. Both 200-m and 100-km observations were compared with the nudged simulations from the National Center for Atmospheric Research (NCAR) Community Atmosphere Model version 6 (CAM6). Simulated aerosol indirect effects are weaker than the observations for both larger and smaller aerosols. Observations show stronger aerosol indirect effects (i.e., positive correlations between IWC, Ni and Na) in the Southern Hemisphere (SH) compared with the Northern Hemisphere (NH), while the simulations show negative correlations in the SH. The simulations underestimate IWC by a factor of 3 – 30 in the early/later growth phase, indicating that the low bias of simulated IWC was due to insufficient ice particle growth. Such hypothesis is consistent with the model biases of lower frequencies of ice supersaturation and lower vertical velocity standard deviation in the early/later growth phases. Overall, these findings show that aircraft observations can capture the competitions between heterogeneous and homogeneous nucleation, and their contributions vary as cirrus clouds evolve. Future model development is also recommended to evaluate and improve the representation of water vapor and vertical velocity on the sub-grid scale to resolve the insufficient ice particle growth. 
    more » « less
  5. Abstract. Parameterizations that impact wet removal of black carbon (BC)remain uncertain in global climate models. In this study, we enhance thedefault wet deposition scheme for BC in the Community Earth System Model (CESM)to (a) add relevant physical processes that were not resolved in thedefault model and (b) facilitate understanding of the relative importanceof various cloud processes on BC distributions. We find that the enhancedscheme greatly improves model performance against HIPPO observationsrelative to the default scheme. We find that convection scavenging, aerosolactivation, ice nucleation, evaporation of rain or snow, and below-cloudscavenging dominate wet deposition of BC. BC conversion rates for processesrelated to in-cloud water–ice conversion (i.e., riming, the Bergeronprocess, and evaporation of cloud water sedimentation) are relativelysmaller, but have large seasonal variations. We also conduct sensitivitysimulations that turn off each cloud process one at a time to quantify theinfluence of cloud processes on BC distributions and radiative forcing.Convective scavenging is found to have the largest impact onBC concentrations at mid-altitudes over the tropics and even globally. Inaddition, BC is sensitive to all cloud processes over the NorthernHemisphere at high latitudes. As for BC vertical distributions, convectivescavenging greatly influences BC fractions at different altitudes.Suppressing BC droplet activation in clouds mainly decreases the fraction ofcolumn BC below 5 km, whereas suppressing BC ice nucleation increases thatabove 10 km. During wintertime, the Bergeron process also significantlyincreases BC concentrations at lower altitudes over the Arctic. Oursimulation yields a global BC burden of 85 Gg; corresponding directradiative forcing (DRF) of BC estimated using the Parallel Offline RadiativeTransfer (PORT) is 0.13 W m−2, much lower than previous studies. Therange of DRF derived from sensitivity simulations is large, 0.09–0.33 W m−2,corresponding to BC burdens varying from 73 to 151 Gg. Due todifferences in BC vertical distributions among each sensitivity simulation,fractional changes in DRF (relative to the baseline simulation) are alwayshigher than fractional changes in BC burdens; this occurs because relocating BCin the vertical influences the radiative forcing per BC mass. Our resultshighlight the influences of cloud microphysical processes on BC concentrationsand radiative forcing. 
    more » « less