skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The terroir of the finch: How spatial and temporal variation shapes phenotypic traits in Darwin's finches
Abstract The termterroiris used in viticulture to emphasize how the biotic and abiotic characteristics of a local site influence grape physiology and thus the properties of wine. In ecology and evolution, such terroir (i.e., the effect of space or “site”) is expected to play an important role in shaping phenotypic traits. Just how important is the pure spatial effect of terroir (e.g., differences between sites that persist across years) in comparison to temporal variation (e.g., differences between years that persist across sites), and the interaction between space and time (e.g., differences between sites change across years)? We answer this question by analyzing beak and body traits of 4388 medium ground finches (Geospiza fortis) collected across 10 years at three locations in Galápagos. Analyses of variance indicated that phenotypic variation was mostly explained by site for beak size (η2 = 0.42) and body size (η2 = 0.43), with a smaller contribution for beak shape (η2 = 0.05) and body shape (η2 = 0.12), but still higher compared to year and site‐by‐year effects. As such, the effect of terroir seems to be very strong in Darwin's finches, notwithstanding the oft‐emphasized interannual variation. However, these results changed dramatically when we excluded data from Daphne Major, indicating that the strong effect of terroir was mostly driven by that particular population. These phenotypic results were largely paralleled in analyses of environmental variables (rainfall and vegetation indices) expected to shape terroir in this system. These findings affirm the evolutionary importance of terroir, while also revealing its dependence on other factors, such as geographical isolation.  more » « less
Award ID(s):
2025085
PAR ID:
10475477
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Ecology and Evolution
Date Published:
Journal Name:
Ecology and Evolution
Volume:
12
Issue:
10
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract To predict ecological responses at broad environmental scales, grass species are commonly grouped into two broad functional types based on photosynthetic pathway. However, closely related species may have distinctive anatomical and physiological attributes that influence ecological responses, beyond those related to photosynthetic pathway alone. Hyperspectral leaf reflectance can provide an integrated measure of covarying leaf traits that may result from phylogenetic trait conservatism and/or environmental conditions. Understanding whether spectra‐trait relationships are lineage specific or reflect environmental variation across sites is necessary for using hyperspectral reflectance to predict plant responses to environmental changes across spatial scales. We measured hyperspectral leaf reflectance (400–2400 nm) and 12 structural, biochemical, and physiological leaf traits from five grass‐dominated sites spanning the Great Plains of North America. We assessed if variation in leaf reflectance spectra among grass species is explained more by evolutionary lineage (as captured by tribes or subfamilies), photosynthetic pathway (C3or C4), or site differences. We then determined whether leaf spectra can be used to predict leaf traits within and across lineages. Our results using redundancy analysis ordination (RDA) show that grass tribe identity explained more variation in leaf spectra (adjustedR2 = 0.12) than photosynthetic pathway, which explained little variation in leaf spectra (adjustedR2 = 0.00). Furthermore, leaf reflectance from the same tribe across multiple sites was more similar than leaf reflectance from the same site across tribes (adjustedR2 = 0.12 and 0.08, respectively). Across all sites and species, trait predictions based on spectra ranged considerably in predictive accuracies (R2 = 0.65 to <0.01), butR2was >0.80 for certain lineages and sites. The relationship between Vcmax, a measure of photosynthetic capacity, and spectra was particularly promising. Chloridoideae, a lineage more common at drier sites, appears to have distinct spectra‐trait relationships compared with other lineages. Overall, our results show that evolutionary relatedness explains more variation in grass leaf spectra than photosynthetic pathway or site, but consideration of lineage‐ and site‐specific trait relationships is needed to interpret spectral variation across large environmental gradients. 
    more » « less
  2. Abstract Previous studies of Loggerhead Shrikes (Laniidae:Lanius ludovicianus) in North America have indicated considerable intraspecific genetic and phenotypic differentiation, but the congruence between genetic and phenotypic differentiation remains obscure. We examined phenotypic differences in beak shape and bite force among geographic groupings across a 950 km range, from the lower Imperial Valley to the upper Central Valley of California, USA. We integrated these analyses with a population genetic analysis of six microsatellite markers to test for correspondence between phenotypic and genetic differences among geographic groups. We found significant phenotypic differentiation despite a lack of significant genetic differentiation among groups. Pairwise beak shape and bite force distances nevertheless were correlated with genetic (FST) distances among geographic groups. Furthermore, the phenotypic and genetic distance matrices were correlated with pairwise geographic distances. Takentogether, these results suggest that phenotypic differences might be influenced by neutral processes, inbreeding (as indicated by high heterozygosity deficiencies we observed), local adaptation, and/or phenotypic plasticity. 
    more » « less
  3. Abstract Divergence in body shape is one of the most widespread and repeated patterns of morphological variation in fishes and is associated with habitat specification and swimming mechanics. Such ecological diversification is the first stage of the explosive adaptive radiation of cichlid fishes in the East African Rift Lakes. We use two hybrid crosses of cichlids (Metriaclimasp.×Aulonocarasp. andLabidochromissp.×Labeotropheussp., >975 animals total) to determine the genetic basis of body shape diversification that is similar to benthic‐pelagic divergence across fishes. Using a series of both linear and geometric shape measurements, we identified 34 quantitative trait loci (QTL) that underlie various aspects of body shape variation. These QTL are spread throughout the genome, each explaining 3.2–8.6% of phenotypic variation, and are largely modular. Further, QTL are distinct both between these two crosses of Lake Malawi cichlids and compared to previously identified QTL for body shape in fishes such as sticklebacks. We find that body shape is controlled by many genes of small effect. In all, we find that convergent body shape phenotypes commonly observed across fish clades are most likely due to distinct genetic and molecular mechanisms. 
    more » « less
  4. Abstract Developmental and evolutionary processes underlying phenotypic variation frequently target several traits simultaneously, thereby causing covariation, or integration, among phenotypes. While phenotypic integration can be neutral, correlational selection can drive adaptive covariation. Especially, the evolution and development of exaggerated secondary sexual traits may require the adjustment of other traits that support, compensate for, or otherwise function in a concerted manner. Although phenotypic integration is ubiquitous, the interplay between genetic, developmental, and ecological conditions in shaping integration and its evolution remains poorly understood. Here, we study the evolution and plasticity of trait integration in the bull‐headed dung beetleOnthophagus tauruswhich is characterized by the polyphenic expression of horned (‘major’) and hornless (‘minor’) male morphs. By comparing populations subject to divergent intensities of mate competition, we tested whether mating system shifts affect integration of traits predicted to function in a morph‐specific manner. We focussed on fore and hind tibia morphology as these appendages are used to stabilize major males during fights, and on wings, as they are thought to contribute to morph‐based differences in dispersal behavior. We found phenotypic integration between fore and hind tibia length and horn length that was stronger in major males, suggesting phenotypic plasticity in integration and potentially secondary sexual trait compensation. Similarly, we observed that fore tibiashapewas also integrated with relative horn length. However, although we found population differentiation in wing and tibia shape and allometry, populations did not differ in integration. Lastly, we detected little evidence for morph differences in integration in either tibia or wing shape, although wing allometries differed between morphs. This contrasts with previous studies documenting intraspecific differentiation in morphology, behavior, and allometry as a response to varying levels of mate competition acrossO. tauruspopulations. We discuss how sexual selection may shape morph‐specific integration, compensation, and allometry across populations. 
    more » « less
  5. Patterns of morphological divergence across species’ ranges can provide insight into local adaptation and speciation. In this study, we compared phenotypic divergence among 4,221 crickets from 337 populations of two closely related species of field cricket,Gryllus firmusandG. pennsylvanicus, and their hybrids. We found that these species differ across their geographic range in key morphological traits, such as body size and ovipositor length, and we directly compared phenotype with genotype for a subset of crickets to demonstrate nuclear genetic introgression, phenotypic intermediacy of hybrids, and essentially unidirectional mitochondrial introgression. We discuss how these morphological traits relate to life history differences between the two species. Our comparisons across geographic areas support prior research suggesting that cryptic variation withinG. firmusmay represent different species. Our study highlights how variable morphology can be across wide-ranging species and the importance of studying reproductive barriers in more than one or two transects of a hybrid zone. 
    more » « less