skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

This content will become publicly available on November 22, 2024

Title: Mixed Nanosphere Assemblies at a Liquid–Liquid Interface

The in‐plane packing of gold (Au), polystyrene (PS), and silica (SiO2) spherical nanoparticle (NP) mixtures at a water–oil interface is investigated in situ by UV–vis reflection spectroscopy. All NPs are functionalized with carboxylic acid such that they strongly interact with amine‐functionalized ligands dissolved in an immiscible oil phase at the fluid interface. This interaction markedly increases the binding energy of these nanoparticle surfactants (NPSs). The separation distance between the Au NPSs and Au surface coverage are measured by the maximum plasmonic wavelength (λmax) and integrated intensities as the assemblies saturate for different concentrations of non‐plasmonic (PS/SiO2) NPs. As the PS/SiO2content increases, the time to reach intimate Au NP contact also increases, resulting from their hindered mobility. λmaxchanges within the first few minutes of adsorption due to weak attractive inter‐NP forces. Additionally, a sharper peak in the reflection spectrum at NP saturation reveals tighter Au NP packing for assemblies with intermediate non‐plasmonic NP content. Grazing incidence small angle X‐ray scattering (GISAXS) and scanning electron microscopy (SEM) measurements confirm a decrease in Au NP domain size for mixtures with larger non‐plasmonic NP content. The results demonstrate a simple means to probe interfacial phase separation behavior using in situ spectroscopy as interfacial structures densify into jammed, phase‐separated NP films.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Binary nanoparticle (NP) superlattices exhibit distinct collective plasmonic, magnetic, optical, and electronic properties. Here, we computationally demonstrate how fluid-fluid interfaces could be used to self-assemble binary systems of NPs into 2D superlattices when the NP species exhibit different miscibility with the fluids forming the interface. We develop a basin-hopping Monte Carlo (BHMC) algorithm tailored for interface-trapped structures to rapidly determine the ground-state configuration of NPs, allowing us to explore the repertoire of binary NP architectures formed at the interface. By varying the NP size ratio, interparticle interaction strength, and difference in NP miscibility with the two fluids, we demonstrate the assembly of an array of exquisite 2D periodic architectures, including AB-, AB2-, and AB3-type monolayer superlattices as well as AB-, AB2-, A3B5-, and A4B6-type bilayer superlattices. Our results suggest that the interfacial assembly approach could be a versatile platform for fabricating 2D colloidal superlattices with tunable structure and properties.

    more » « less
  2. Defects in liquid crystals serve as templates for nanoparticle (NP) organization; however, NP assembly in cholesteric (Ch) liquid crystals is only beginning to emerge. We show interactive morphogenesis of NP assemblies and a Ch liquid crystalline host formed by cellulose nanocrystals (CNCs), in which both the host and the guest experience marked changes in shape and structure as a function of concentration. At low NP loading, Ch-CNC droplets exhibit flat-ellipsoidal packing of Ch pseudolayers, while the NPs form a toroidal ring- or two cone–shaped assemblies at droplet poles. Increase in NP loading triggers reversible droplet transformation to gain a core-shell morphology with an isotropic core and a Ch shell, with NPs partitioning in the core and in disclinations. We show programmable assembly of droplets carrying magnetic NPs. This work offers a strategy for NP organization in Ch liquid crystals, thus broadening the spectrum of architectures of soft nanostructured materials. 
    more » « less
  3. Naturally occurring nanocomposites like nacre owe their exceptional mechanical properties to high loadings of platelets that are bridged by small volume fractions of polymers. Polymer infiltration into dense assemblies of nanoparticles provides a powerful and potentially scalable approach to manufacture bio-inspired nanocomposites that mimic nacre's architecture. Solvent-driven infiltration of polymers (SIP) into nanoparticle packings formed on top of glassy polymer films is induced via capillary condensation of a solvent in the interstitial voids between nanoparticles (NP), followed by plasticization and transport of polymers into the liquid-filled pores, leading to the formation of the nanocomposite structure. To understand the effect of polymer–nanoparticle interactions on the dynamics of polymer infiltration in SIP, we perform molecular dynamics simulations. The mechanism of polymer infiltration and the influence of interactions between polymer and NPs on the dynamics of the process are investigated. Depending on the strength of interaction, polymer infiltration either follows (a) dissolution-dominated infiltration where plasticized polymer chains remain solvated in the pores and rapidly diffuse into the packing or (b) adhesion-dominated transport where the chains adsorb onto the nanoparticle surface and move slowly through the nanoparticle film as a well-defined front. A non-monotonic trend emerges as the adhesion strength is increased; the infiltration of chains becomes faster with the co-operative effect of adhesion and dissolution as adhesion increases but eventually slows down when the polymer–nanoparticle adhesion dominates. 
    more » « less
  4. Abstract

    Nanoparticle (NP) additions can substantially improve the performance of reverse osmosis and nanofiltration polyamide (PA) membranes. However, the relative impacts of leading additives are poorly understood. In this study, we compare the effects ofTiO2andSiO2NPs as nanofillers in PA membranes with respect to permeate flux and the rejection of organic matter (OM) and salts. Thin‐film nanocomposite (TFN) PA membranes were fabricated using similarly sizedTiO215 nm andSiO2(10 – 20 nm)NPs, introduced at four different NP concentrations (0.01, 0.05, 0.2, and 0.5% w/v). Compared with PA membranes fabricated without NPs, membranes fabricated with nanofillers improved membranes hydrophilicity, membrane porosity, and consequently the permeability. Permeability was increased by 24 and 58% with the addition ofTiO2andSiO2, respectively. Rejection performance and fouling behavior of the membranes were examined with salt (MgSO4andNaCl) and OM (humic acid [HA] and tannic acid [TA]). The addition ofTiO2andSiO2nanofillers to the PA membranes improved the permeability of these membranes and also increased the rejection ofMgSO4, especially for TiO2membranes. The addition ofTiO2andSiO2to the membranes exhibited a higher flux and lower flux decline ratio than the control membrane in OM solution filtration. TFN membranes' HA and TA rejections were at least 77 and 71%, respectively. The surface change properties of NPs appear to play a dominant role in determining their effects as nanofillers in the composite membrane matrix through a balance of changes produced in membrane pore size and membrane hydrophilicity.

    more » « less
  5. Abstract

    Despite decades of progress, developing minimally invasive bone‐specific drug delivery systems (DDS) to improve fracture healing remains a significant clinical challenge. To address this critical therapeutic need, nanoparticle (NP) DDS comprised of poly(styrene‐alt‐maleic anhydride)‐b‐poly(styrene) (PSMA‐b‐PS) functionalized with a peptide that targets tartrate‐resistant acid phosphatase (TRAP) and achieves preferential fracture accumulation has been developed. The delivery of AR28, a glycogen synthase kinase‐3 beta (GSK3β) inhibitor, via the TRAP binding peptide‐NP (TBP‐NP) expedites fracture healing. Interestingly, however, NPs are predominantly taken up by fracture‐associated macrophages rather than cells typically associated with fracture healing. Therefore, the underlying mechanism of healing via TBP‐NP is comprehensively investigated herein. TBP‐NPAR28promotes M2 macrophage polarization and enhances osteogenesis in preosteoblast‐macrophage co‐cultures in vitro. Longitudinal analysis of TBP‐NPAR28‐mediated fracture healing reveals distinct spatial distributions of M2 macrophages, an increased M2/M1 ratio, and upregulation of anti‐inflammatory and downregulated pro‐inflammatory genes compared to controls. This work demonstrates the underlying therapeutic mechanism of bone‐targeted NP DDS, which leverages macrophages as druggable targets and modulates M2 macrophage polarization to enhance fracture healing, highlighting the therapeutic benefit of this approach for fractures and bone‐associated diseases.

    more » « less