A growing body of literature has highlighted the importance of phytoplankton-bacterial associations to marine and estuarine ecological and biogeochemical function, but their population linkages remain sparsely characterized within urban estuaries. Since many developed coastlines are heavily impacted by anthropogenic nutrient inputs, elucidating their phytoplankton-bacterial dynamics provides insight into nutrient cycling, productivity, and can help inform water quality management. This study compared surface (0.5 m depth) physical water quality, cell abundances of major phytoplankton taxa and bacteria, as well as concentrations of chlorophyll
In estuaries, local processes such as changing material loads from the watershed and complex circulation create dynamic environments with respect to ecosystem metabolism and carbonate chemistry that can strongly modulate impacts of global atmospheric CO2increases on estuarine pH. Long‐term (> 20 yr) surface water pH records from the USA's two largest estuaries, Chesapeake Bay (CB) and Neuse River Estuary‐Pamlico Sound (NRE‐PS) were examined to understand the relative importance of atmospheric forcing vs. local processes in controlling pH. At the estuaries’ heads, pH increases in CB and decreases in NRE‐PS were driven primarily by changing ratios of river alkalinity to dissolved inorganic carbon concentrations. In upper reaches of CB and middle reaches of the NRE‐PS, pH increases were associated with increases in phytoplankton biomass. There was no significant pH change in the lower NRE‐PS and only the polyhaline CB showed a pH decline consistent with ocean acidification. In both estuaries, interannual pH variability showed robust, positive correlations with chlorophyll
- PAR ID:
- 10475545
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Limnology and Oceanography
- Volume:
- 68
- Issue:
- 10
- ISSN:
- 0024-3590
- Format(s):
- Medium: X Size: p. 2227-2244
- Size(s):
- p. 2227-2244
- Sponsoring Org:
- National Science Foundation
More Like this
-
a (chla ) and dissolved organic matter (DOM) in the nitrogen (N)-enriched Western Long Island Sound (WLIS), USA, between mid-channel and shore sites (in 2020 and 2021). Shore bacterial and phytoplankton abundances as well as DOM concentrations (primarily dissolved organic N and carbon [DOC]), were significantly higher than mid-channel, especially during summer, indicative of terrestrial loading influencing microbial assemblages as well as N and C cycling. Abundances of key phytoplankton taxa were better indicators of bacterial abundances than chla , as bacterial abundances positively and significantly correlated with those of dinoflagellates, especially the most common generaProrocentrum (mid-channel, shore) andHeterocapsa (shore only), but not with diatoms. However, pennate diatom abundances negatively and significantly correlated with DOC concentrations in the mid-channel. Results highlight the impact of terrestrial inputs on WLIS microbial assemblage dynamics, presumably by favoring bacteria and dinoflagellate population coupling, as well as shed new ecological insight into how phytoplankton and bacterial communities respond to nutrient loadings in urban estuaries. -
It is widely recognized that nitrogen (N) inputs from watersheds to estuaries are modified during transport through river networks, but changes within tidal freshwater zones (TFZs) have been largely overlooked. This paper sheds new light on the role that TFZs play in modifying the timing and forms of N inputs to estuaries by (1) characterizing spatial and temporal variability of N concentrations and forms in the TFZs of the Mission and Aransas rivers, Texas, USA, and (2) examining seasonal fluxes of N into and out of the Aransas River TFZ. Median concentrations of dissolved inorganic N (DIN) were lower in the TFZs than in upstream non-tidal river reaches and exhibited spatial gradients linked to locations of major N inputs. These spatial patterns were stronger during winter than summer. The forms of N also changed substantially, with DIN changing to organic N (primarily phytoplankton) within the TFZs. Discharge and N flux comparisons for the Aransas River TFZ demonstrated that secular tidal patterns modulate the timing of N export during baseflow conditions: N export far exceeded input during winter, whereas export and input were relatively balanced during summer. While more data are needed to build an annual N budget, our results show that TFZ can change the timing and form of N export immediately upstream of estuaries.more » « less
-
A four-decade dataset that spans seven estuaries along a latitudinal gradient in the northwestern Gulf of Mexico and includes measurements of pH and total alkalinity was used to calculate partial pressure of CO 2 ( p CO 2 ), dissolved inorganic carbon (DIC), saturation state of aragonite (Ω Ar ), and a buffer factor (β DIC , which measures the response of proton concentration or pH to DIC concentration change) and examine long-term trends and spatial patterns in these parameters. With the notable exception of the northernmost and southernmost estuaries (and selected stations near freshwater input), these estuaries have generally experienced long-term increases in p CO 2 and decreases in DIC, Ω Ar , and β DIC , with the magnitude of change generally increasing from north to south. At all stations with increasing p CO 2 , the rate of increase exceeded the rate of increase in atmospheric p CO 2 , indicating that these estuaries have become a greater source of CO 2 to the atmosphere over the last few decades. The decreases in Ω Ar have yet to cause Ω Ar to near undersaturation, but even the observed decreases may have the potential to decrease calcification rates in important estuarine calcifiers like oysters. The decreases in β DIC directly indicate that these estuaries have experienced continually greater change in pH in the context of ocean acidification.more » « less
-
Abstract Understanding decadal changes in the coastal carbonate system is essential for predicting how the health of these waters responds to anthropogenic drivers, such as changing atmospheric conditions and riverine inputs. However, studies that quantify the relative impacts of these drivers are lacking. In this study, the primary drivers of decadal trends in the surface carbonate system, and the spatiotemporal variability in these trends, are identified for a large coastal plain estuary: the Chesapeake Bay. Experiments using a coupled three‐dimensional hydrodynamic‐biogeochemical model highlight that, over the past three decades, the changes in the surface carbonate system of Chesapeake Bay have strong seasonal and spatial variability. The greatest surface pH and aragonite saturation state (ΩAR) reductions have occurred in the summer in the middle (mesohaline) Bay: −0.24 and −0.9 per 30 years, respectively, with increases in atmospheric CO2and reductions in nitrate loading both being primary drivers. Reductions in nitrate loading have a strong seasonal influence on the carbonate system, with the most pronounced decadal decreases in pH and ΩARoccurring during the summer when primary production is strongly dependent on nutrient availability. Increases in riverine total alkalinity and dissolved inorganic carbon have raised surface pH in the upper oligohaline Bay, while other drivers such as atmospheric warming and input of acidified ocean water through the Bay mouth have had comparatively minor impacts on the estuarine carbonate system. This work has significant implications for estuarine ecosystem services, which are typically most sensitive to surface acidification in the spring and summer seasons.
-
Abstract A unique combination of data collected from fixed instruments, spatial surveys, and a long‐term observing network in the Hudson River demonstrate the importance of spatial and temporal variations in atmospheric gas flux. The atmospheric exchanges of oxygen (O2) and carbon dioxide (CO2) exhibit variability at a range of time scales including pronounced modulation driven by spring‐neap variations in stratification and mixing. During weak neap tides, bottom waters become enriched in pCO2and depleted in dissolved oxygen because strong stratification limits vertical mixing and isolates sub‐pycnocline water from atmospheric exchange. Estuarine circulation also is enhanced during neap tides so that bottom waters, and their associated dissolved gases, are transported up‐estuary. Strong mixing during spring tides effectively ventilates bottom waters resulting in enhanced CO2evasion and O2invasion. The spring‐neap modulation in the estuarine portion of the Hudson River is enhanced because fortnightly variations in mixing have a strong influence on phytoplankton dynamics, allowing strong blooms to occur during weak neap tides. During blooms, periods of CO2invasion and O2evasion occur over much of the lower stratified estuary. The along‐estuary distribution of stratification, which decreases up‐estuary, favors enhanced gas exchange near the limit of salt, where vertical stratification is absent. This region, which we call the estuarine gas exchange maximum (EGM), results from the convergence in bottom transport and is analogous to the estuarine turbidity maximum (ETM). Much like the ETM, the EGM is likely to be a common feature in many partially mixed and stratified estuarine systems.