skip to main content

This content will become publicly available on December 1, 2024

Title: A trait dataset for freshwater mussels of the United States of America

The United States of America has a diverse collection of freshwater mussels comprising 301 species distributed among 59 genera and two families (Margaritiferidae and Unionidae), each having a unique suite of traits. Mussels are among the most imperilled animals and are critical components of their ecosystems, and successful management, conservation and research requires a cohesive and widely accessible data source. Although trait-based analysis for mussels has increased, only a small proportion of traits reflecting mussel diversity in this region has been collated. Decentralized and non-standardized trait information impedes large-scale analysis. Assembling trait data in a synthetic dataset enables comparison across species and lineages and identification of data gaps. We collated data from the primary literature, books, state and federal reports, theses and dissertations, and museum collections into a centralized dataset covering information on taxonomy, morphology, reproductive ecology and life history, fish hosts, habitats, thermal tolerance, geographic distribution, available genetic information, and conservation status. By collating these traits, we aid researchers in assessing variation in mussel traits and modelling ecosystem change.

more » « less
Award ID(s):
1942707 1831512
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature and data available via FigShare
Date Published:
Journal Name:
Scientific Data
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Freshwater mussels (Mollusca: Unionidae) play a crucial role in freshwater river environments where they live in multi-species aggregations and often serve as long-lived benthic ecosystem engineers. Many of these species are imperiled and it is imperative that we understand their basic needs to aid in the reestablishment and maintenance of mussel beds in rivers. In an effort to expand our knowledge of the diet of these organisms, five species of mussel were introduced into enclosed systems in two experiments. In the first, mussels were incubated in water from the Clinch River (Virginia, USA) and in the second, water from a manmade pond at the Commonwealth of Virginia’s Aquatic Wildlife Conservation Center in Marion, VA. Quantitative PCR and eDNA metabarcoding were used to determine which planktonic microbes were present before and after the introduction of mussels into each experimental system. It was found that all five species preferentially consumed microeukaryotes over bacteria. Most microeukaryotic taxa, including Stramenopiles and Chlorophytes were quickly consumed by all five mussel species. We also found that they consumed fungi but not as quickly as the microalgae, and that one species of mussel,Ortmanniana pectorosa, consumed bacteria but only after preferred food sources were depleted. Our results provide evidence that siphon feeding Unionid mussels can select preferred microbes from mixed plankton, and mussel species exhibit dietary niche differentiation.

    more » « less
  2. Abstract

    Freshwater mussels are dominant ecosystem engineers in many streams throughout North America, yet they remain among the world's most imperiled fauna. Extensive research has quantified the ecological role of mussels in aquatic habitats, but little is known about the interaction between mussels and their surrounding physical and hydrodynamic habitat. Here the physical interactions of mussels with near‐bed flow are investigated in an experimental channel using model mussels. The results show that (1) mussels disrupt the distributions and magnitudes of time‐averaged values of longitudinal flow velocity and Reynolds shear stress depending on mussel density, and (2) at densities of approximately 25 mussels m−2and greater, a hydrodynamic transition occurs where the maximum Reynolds shear stress is displaced from the bed to the height of the mussel canopy, near‐bed longitudinal flow velocity is reduced, and average turbulent shear stresses acting on the mussels are reduced by as much as 64%, thus markedly decreasing the dislodgement potential of the mussels by these stresses. These results provide strong empirical evidence for a positive density‐dependent effect related to flow‐organism interactions and their ecological success, such as enhancing river bed hydrodynamic habitat complexity or decreasing the turbulent shear stresses acting to dislodge mussels from the river bed. This information will improve the understanding of the long‐term persistence of mussel beds and help focus future conservation strategies.

    more » « less
  3. Abstract Indigenous freshwater mussels (Unionidae) are integral to riverine ecosystems, playing a pivotal role in aquatic food webs and providing ecological services. With populations on the decline worldwide, freshwater mussels are of conservation concern. In this study, we explore the propensity of the invasive Round Goby (Neogobius melanostomus) fish to prey upon indigenous freshwater mussels. First, we conducted lab experiments where Round Gobies were given the opportunity to feed on juvenile unionid mussels and macroinvertebrates, revealing rates and preferences of consumption. Several Round Gobies consumed whole freshwater mussels during these experiments, as confirmed by mussel counts and x-ray images of the fishes. Next, we investigated Round Gobies collected from stream habitats of the French Creek watershed, which is renowned for its unique and rich aquatic biodiversity. We developed a novel DNA metabarcoding method to identify the specific species of mussels consumed by Round Goby and provide a new database of DNA gene sequences for 25 indigenous unionid mussel species. Several of the fishes sampled had consumed indigenous mussels, including the Elktoe (non-endangered), Creeper (non-endangered), Long Solid (state endangered), and Rayed Bean (federally endangered) species. The invasive Round Goby poses a growing threat to unionid mussels, including species of conservation concern. The introduction of the invasive Round Goby to freshwaters of North America is shaping ecosystem transitions within the aquatic critical zone having widespread implications for conservation and management. 
    more » « less
  4. Abstract Motivation

    Biodiversity in many areas is rapidly declining because of global change. As such, there is an urgent need for new tools and strategies to help identify, monitor and conserve biodiversity hotspots. This is especially true for frugivores, species consuming fruit, because of their important role in seed dispersal and maintenance of forest structure and health. One way to identify these areas is by quantifying functional diversity, which measures the unique roles of species within a community and is valuable for conservation because of its relationship with ecosystem functioning. Unfortunately, the functional trait information required for these studies can be sparse for certain taxa and specific traits and difficult to harmonize across disparate data sources, especially in biodiversity hotspots. To help fill this need, we compiled Frugivoria, a trait database containing ecological, life‐history, morphological and geographical traits for mammals and birds exhibiting frugivory. Frugivoria encompasses species in contiguous moist montane forests and adjacent moist lowland forests of Central and South America—the latter specifically focusing on the Andean states. Compared with existing trait databases, Frugivoria harmonizes existing trait databases, adds new traits, extends traits originally only available for mammals to birds also and fills gaps in trait categories from other databases. Furthermore, we create a cross‐taxa subset of shared traits to aid in analysis of mammals and birds. In total, Frugivoria adds 8662 new trait values for mammals and 14,999 for birds and includes a total of 45,216 trait entries with only 11.37% being imputed. Frugivoria also contains an open workflow that harmonizes trait and taxonomic data from disparate sources and enables users to analyse traits in space. As such, this open‐access database, which aligns with FAIR data principles, fills a major knowledge gap, enabling more comprehensive trait‐based studies of species in this ecologically important region.

    Main Types of Variable Contained

    Ecological, life‐history, morphological and geographical traits.

    Spatial Location and Grain

    Neotropical countries (Mexico, Guatemala, Costa Rica, Panama, El Salvador, Belize, Nicaragua, Ecuador, Colombia, Peru, Bolivia, Argentina, Venezuela and Chile) with contiguous montane regions.

    Time Period and Grain

    IUCN spatial data: obtained February 2023, spanning range maps collated from 1998 to 2022. IUCN species data: obtained June 2019–September 2022. Newly included traits: span 1924 to 2023.

    Major Taxa and Level of Measurement

    Classes Mammalia and Aves; 40,074 species‐level traits; 5142 imputed traits for 1733 species (mammals: 582; birds: 1147) and 16 sub‐species (mammals).

    Software Format

    .csv; R.

    more » « less
  5. Abstract

    In streams, unionoid mussels and fish form aggregations that exert bottom‐up and top‐down effects on food webs, but the magnitude and spatial extent of their effects are controlled by species traits. Sedentary mussels live burrowed in the sediment in patchily distributed dense aggregations (mussel beds) where they filter seston and provide a local, relatively constant nutrient subsidy. In contrast, fish move on and off mussel beds, and thus comprise a transient nutrient subsidy.

    We asked how overlap between fish and mussels influences nutrient recycling and resource distribution in streams. We conducted an 8‐week study in experimental streams where we created mussel beds (comprised of two species,Actinonaias ligamentinaandAmblema plicata), manipulated the occurrence of a grazing minnow (Campostoma anomalum), and tracked nutrient (nitrogen and phosphorus) and resource (algae, detritus, and chironomids) abundance up and downstream of the mussel beds.

    In general, neither consumer had strong effects on the concentration or spatial distribution of nutrients. Water turnover time in our experimental streams may have diluted fish and mussel nutrient excretion effects, making it difficult to detect spatial patterns during a given sampling period.

    Fish controlled the abundance and productivity of algae. In treatments without fish, large mats of filamentous algae formed early in the experiment. These algae senesced, decomposed, and were not replaced. When fish were present, algae consisted of attached biofilms with consistent biomass and spatial distribution over time.

    Although previous work has shown that mussels can have strong, seasonal bottom‐up effects on both primary and secondary production, our results suggested that adding grazing mobile fishes, led to a more consistent and homogenous supply of algal resources. Because mussels rarely occur in the absence of fish, considering their combined influence on ecosystem dynamics is likely to be important.

    more » « less