The age of information (AoI) is now well established as a metric that measures the freshness of information delivered to a receiver from a source that generates status updates. This paper is motivated by the inherent value of packets arising in many cyber-physical applications (e.g., due to precision of the information content or an alarm message). In contrast to AoI, which considers all packets are of equal importance or value, we consider status update systems with update packets carrying values as well as their generated time stamps. A status update packet has a random initial value at the source and a deterministic deadline after which its value vanishes (called ultimate staleness). In our model, the value of a packet either remains constant until the deadline or decreases in time (even after reception) starting from its generation to the deadline when it vanishes. We consider two metrics for the value of information (VoI) at the receiver: sum VoI is the sum of the current values of all packets held by the receiver, whereas packet VoI is the value of a packet at the instant it is delivered to the receiver. We investigate various queuing disciplines under potential dependence between value and service time and provide closed form expressions for both average sum VoI and packet VoI at the receiver. Numerical results illustrate the average VoI for different scenarios and relations between average sum VoI and average packet VoI.
more » « less- Award ID(s):
- 2219180
- PAR ID:
- 10475785
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Entropy
- Volume:
- 24
- Issue:
- 4
- ISSN:
- 1099-4300
- Page Range / eLocation ID:
- 449-470
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
This paper studies the “age of information” (AoI) in a multi-source status update system where N active sources each send updates of their time-varying process to a monitor through a server with packet delivery errors. We analyze the average AoI for stationary randomized and round-robin scheduling policies. For both of these scheduling policies, we further analyze the effect of packet retransmission policies, i.e., retransmission without re- sampling, retransmission with resampling, or no retransmission, when errors occur. Expressions for the average AoI are derived for each case. It is shown that the round-robin schedule policy in conjunction with retransmission with resampling when errors occur achieves the lowest average AoI among the considered cases. For stationary randomized schedules with equiprobable source selection, it is further shown that the average AoI gap to round-robin schedules with the same packet management policy scales as O(N). Finally, for stationary randomized policies, the optimal source selection probabilities that minimize a weighted sum average AoI metric are derived.more » « less
-
Age of information (AoI) is a recently proposed metric for measuring information freshness. AoI measures the time that elapsed since the last received update was generated. We consider the problem of minimizing average and peak AoI in wireless networks under general interference constraints. When fresh information is always available for transmission, we show that a stationary scheduling policy is peak age optimal. We also prove that this policy achieves average age that is within a factor of two of the optimal average age. In the case where fresh information is not always available, and packet/information generation rate has to be controlled along with scheduling links for transmission, we prove an important separation principle: the optimal scheduling policy can be designed assuming fresh information, and independently, the packet generation rate control can be done by ignoring interference. Peak and average AoI for discrete time G/Ber/1 queue is analyzed for the first time, which may be of independent interest.more » « less
-
measuring information freshness. AoI measures the time that elapsed since the last received update was generated. We consider the problem of minimizing average and peak AoI in wireless networks under general interference constraints. When fresh information is always available for transmission, we show that a stationary scheduling policy is peak age optimal. We also prove that this policy achieves average age that is within a factor of two of the optimal average age. In the case where fresh information is not always available, and packet/information generation rate has to be controlled along with scheduling links for transmission, we prove an important separation principle: the optimal scheduling policy can be designed assuming fresh information, and independently, the packet generation rate control can be done by ignoring interference. Peak and average AoI for discrete time G/Ber/1 queue is analyzed for the first time, which may be of independent interest.more » « less
-
A source submits status update jobs to a service fa- cility for processing and delivery to a monitor. The status updates belong to service classes with different service requirements. We model the service requirements using a hyperexponential service time model. To avoid class-specific bias in the service process, the system implements an M/G/1/1 blocking queue; new arrivals are discarded if the server is busy. Using an age-of-information (AoI) metric to characterize timeliness of the updates, a stochastic hybrid system (SHS) approach is employed to derive the overall average AoI and the average AoI for each service class. We observe that both the overall AoI and class-specific AoI share a common penalty that is a function of the second moment of the average service time and they differ chiefly because of their different arrival rates. We show that each high-probability service class has an associated age-optimal update arrival rate while low- probability service classes incur an average age that is always decreasing in the update arrival rate.more » « less
-
A source generates time-stamped update packets that are sent to a server and then forwarded to a monitor. This occurs in the presence of an adversary that can infer information about the source by observing the output process of the server. The server wishes to release updates in a timely way to the monitor but also wishes to minimize the information leaked to the adversary. We analyze the trade-off between the age of information (AoI) and the maximal leakage for systems in which the source generates updates as a Bernoulli process. For a time slotted system in which sending an update requires one slot, we consider three server policies: (1) Memoryless with Bernoulli Thinning (MBT): arriving updates are queued with some probability and head-of-line update is released after a geometric holding time; (2) Deterministic Accumulate-and-Dump (DAD): the most recently generated update (if any) is released after a fixed time; (3) Random Accumulate-and-Dump (RAD): the most recently generated update (if any) is released after a geometric waiting time. We show that for the same maximal leakage rate, the DAD policy achieves lower age compared to the other two policies but is restricted to discrete age-leakage operating points.more » « less