skip to main content


Title: Plant science corpus
The plant science corpus consists of the titles and abstracts of plant science articles in PubMed published prior to 2021 with a small number of 2021 records due to modification of records. The columns are: Index: integer index serving as identifier PMID: PubMed identifier Date: Publication date Journal: journal where the article was published Title: Title of the article Abstract: Abstract of the article Corpus: Title and abstract combined Text classification score: plant science record prediction model score Preprocessed corpus: Corpus after lower-casing, stop word removal, removal of non-alphanumeric and non-white space characters, lemmitisation Topic: index of topics after topic modeling  more » « less
Award ID(s):
2107215
NSF-PAR ID:
10475805
Author(s) / Creator(s):
Publisher / Repository:
Zenodo
Date Published:
Format(s):
Medium: X
Location:
Michigan State University
Sponsoring Org:
National Science Foundation
More Like this
  1. The objective of this article was to review existing research to assess the evidence for predictive processing (PP) in sign language, the conditions under which it occurs, and the effects of language mastery (sign language as a first language, sign language as a second language, bimodal bilingualism) on the neural bases of PP. This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework. We searched peer-reviewed electronic databases (SCOPUS, Web of Science, PubMed, ScienceDirect, and EBSCO host) and gray literature (dissertations in ProQuest). We also searched the reference lists of records selected for the review and forward citations to identify all relevant publications. We searched for records based on five criteria (original work, peer-reviewed, published in English, research topic related to PP or neural entrainment, and human sign language processing). To reduce the risk of bias, the remaining two authors with expertise in sign language processing and a variety of research methods reviewed the results. Disagreements were resolved through extensive discussion. In the final review, 7 records were included, of which 5 were published articles and 2 were dissertations. The reviewed records provide evidence for PP in signing populations, although the underlying mechanism in the visual modality is not clear. The reviewed studies addressed the motor simulation proposals, neural basis of PP, as well as the development of PP. All studies used dynamic sign stimuli. Most of the studies focused on semantic prediction. The question of the mechanism for the interaction between one’s sign language competence (L1 vs. L2 vs. bimodal bilingual) and PP in the manual-visual modality remains unclear, primarily due to the scarcity of participants with varying degrees of language dominance. There is a paucity of evidence for PP in sign languages, especially for frequency-based, phonetic (articulatory), and syntactic prediction. However, studies published to date indicate that Deaf native/native-like L1 signers predict linguistic information during sign language processing, suggesting that PP is an amodal property of language processing. Systematic Review Registration [ https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021238911 ], identifier [CRD42021238911]. 
    more » « less
  2. Abstract Purpose The ability to identify the scholarship of individual authors is essential for performance evaluation. A number of factors hinder this endeavor. Common and similarly spelled surnames make it difficult to isolate the scholarship of individual authors indexed on large databases. Variations in name spelling of individual scholars further complicates matters. Common family names in scientific powerhouses like China make it problematic to distinguish between authors possessing ubiquitous and/or anglicized surnames (as well as the same or similar first names). The assignment of unique author identifiers provides a major step toward resolving these difficulties. We maintain, however, that in and of themselves, author identifiers are not sufficient to fully address the author uncertainty problem. In this study we build on the author identifier approach by considering commonalities in fielded data between authors containing the same surname and first initial of their first name. We illustrate our approach using three case studies. Design/methodology/approach The approach we advance in this study is based on commonalities among fielded data in search results. We cast a broad initial net—i.e., a Web of Science (WOS) search for a given author’s last name, followed by a comma, followed by the first initial of his or her first name (e.g., a search for ‘John Doe’ would assume the form: ‘Doe, J’). Results for this search typically contain all of the scholarship legitimately belonging to this author in the given database (i.e., all of his or her true positives), along with a large amount of noise, or scholarship not belonging to this author (i.e., a large number of false positives). From this corpus we proceed to iteratively weed out false positives and retain true positives. Author identifiers provide a good starting point—e.g., if ‘Doe, J’ and ‘Doe, John’ share the same author identifier, this would be sufficient for us to conclude these are one and the same individual. We find email addresses similarly adequate—e.g., if two author names which share the same surname and same first initial have an email address in common, we conclude these authors are the same person. Author identifier and email address data is not always available, however. When this occurs, other fields are used to address the author uncertainty problem. Commonalities among author data other than unique identifiers and email addresses is less conclusive for name consolidation purposes. For example, if ‘Doe, John’ and ‘Doe, J’ have an affiliation in common, do we conclude that these names belong the same person? They may or may not; affiliations have employed two or more faculty members sharing the same last and first initial. Similarly, it’s conceivable that two individuals with the same last name and first initial publish in the same journal, publish with the same co-authors, and/or cite the same references. Should we then ignore commonalities among these fields and conclude they’re too imprecise for name consolidation purposes? It is our position that such commonalities are indeed valuable for addressing the author uncertainty problem, but more so when used in combination. Our approach makes use of automation as well as manual inspection, relying initially on author identifiers, then commonalities among fielded data other than author identifiers, and finally manual verification. To achieve name consolidation independent of author identifier matches, we have developed a procedure that is used with bibliometric software called VantagePoint (see www.thevantagepoint.com) While the application of our technique does not exclusively depend on VantagePoint, it is the software we find most efficient in this study. The script we developed to implement this procedure is designed to implement our name disambiguation procedure in a way that significantly reduces manual effort on the user’s part. Those who seek to replicate our procedure independent of VantagePoint can do so by manually following the method we outline, but we note that the manual application of our procedure takes a significant amount of time and effort, especially when working with larger datasets. Our script begins by prompting the user for a surname and a first initial (for any author of interest). It then prompts the user to select a WOS field on which to consolidate author names. After this the user is prompted to point to the name of the authors field, and finally asked to identify a specific author name (referred to by the script as the primary author) within this field whom the user knows to be a true positive (a suggested approach is to point to an author name associated with one of the records that has the author’s ORCID iD or email address attached to it). The script proceeds to identify and combine all author names sharing the primary author’s surname and first initial of his or her first name who share commonalities in the WOS field on which the user was prompted to consolidate author names. This typically results in significant reduction in the initial dataset size. After the procedure completes the user is usually left with a much smaller (and more manageable) dataset to manually inspect (and/or apply additional name disambiguation techniques to). Research limitations Match field coverage can be an issue. When field coverage is paltry dataset reduction is not as significant, which results in more manual inspection on the user’s part. Our procedure doesn’t lend itself to scholars who have had a legal family name change (after marriage, for example). Moreover, the technique we advance is (sometimes, but not always) likely to have a difficult time dealing with scholars who have changed careers or fields dramatically, as well as scholars whose work is highly interdisciplinary. Practical implications The procedure we advance has the ability to save a significant amount of time and effort for individuals engaged in name disambiguation research, especially when the name under consideration is a more common family name. It is more effective when match field coverage is high and a number of match fields exist. Originality/value Once again, the procedure we advance has the ability to save a significant amount of time and effort for individuals engaged in name disambiguation research. It combines preexisting with more recent approaches, harnessing the benefits of both. Findings Our study applies the name disambiguation procedure we advance to three case studies. Ideal match fields are not the same for each of our case studies. We find that match field effectiveness is in large part a function of field coverage. Comparing original dataset size, the timeframe analyzed for each case study is not the same, nor are the subject areas in which they publish. Our procedure is more effective when applied to our third case study, both in terms of list reduction and 100% retention of true positives. We attribute this to excellent match field coverage, and especially in more specific match fields, as well as having a more modest/manageable number of publications. While machine learning is considered authoritative by many, we do not see it as practical or replicable. The procedure advanced herein is both practical, replicable and relatively user friendly. It might be categorized into a space between ORCID and machine learning. Machine learning approaches typically look for commonalities among citation data, which is not always available, structured or easy to work with. The procedure we advance is intended to be applied across numerous fields in a dataset of interest (e.g. emails, coauthors, affiliations, etc.), resulting in multiple rounds of reduction. Results indicate that effective match fields include author identifiers, emails, source titles, co-authors and ISSNs. While the script we present is not likely to result in a dataset consisting solely of true positives (at least for more common surnames), it does significantly reduce manual effort on the user’s part. Dataset reduction (after our procedure is applied) is in large part a function of (a) field availability and (b) field coverage. 
    more » « less
  3. null (Ed.)
    Topic modeling, a method for extracting the underlying themes from a collection of documents, is an increasingly important component of the design of intelligent systems enabling the sense-making of highly dynamic and diverse streams of text data related but not limited to scientific discovery. Traditional methods such as Dynamic Topic Modeling (DTM) do not lend themselves well to direct parallelization because of dependencies from one time step to another. In this paper, we introduce and empirically analyze Clustered Latent Dirichlet Allocation (CLDA), a method for extracting dynamic latent topics from a collection of documents. Our approach is based on data decomposition in which the data is partitioned into segments, followed by topic modeling on the individual segments. The resulting local models are then combined into a global solution using clustering. The decomposition and resulting parallelization leads to very fast runtime even on very large datasets. Our approach furthermore provides insight into how the composition of topics changes over time and can also be applied using other data partitioning strategies over any discrete features of the data, such as geographic features or classes of users. In this paper CLDA is applied successfully to seventeen years of NIPS conference papers (2,484 documents and 3,280,697 words), seventeen years of computer science journal abstracts (533,588 documents and 46,446,184 words), and to forty years of the PubMed corpus (4,025,976 documents and 386,847,695 words). On the PubMed corpus, we demonstrate the versatility of CLDA by segmenting the data by both time and by journal. Our runtime on this corpus demonstrates an ability to function on very large scale datasets. 
    more » « less
  4. Parkinson’s disease (PD) is a neurological disorder with complicated and disabling motor and non-motor symptoms. The complexity of PD pathology is amplified due to its dependency on patient diaries and the neurologist’s subjective assessment of clinical scales. A significant amount of recent research has explored new cost-effective and subjective assessment methods pertaining to PD symptoms to address this challenge. This article analyzes the application areas and use of mobile and wearable technology in PD research using the PRISMA methodology. Based on the published papers, we identify four significant fields of research: diagnosis, prognosis and monitoring, predicting response to treatment, and rehabilitation. Between January 2008 and December 2021, 31,718 articles were published in four databases: PubMed Central, Science Direct, IEEE Xplore, and MDPI. After removing unrelated articles, duplicate entries, non-English publications, and other articles that did not fulfill the selection criteria, we manually investigated 1559 articles in this review. Most of the articles (45%) were published during a recent four-year stretch (2018–2021), and 19% of the articles were published in 2021 alone. This trend reflects the research community’s growing interest in assessing PD with wearable devices, particularly in the last four years of the period under study. We conclude that there is a substantial and steady growth in the use of mobile technology in the PD contexts. We share our automated script and the detailed results with the public, making the review reproducible for future publications. 
    more » « less
  5. This dataset incorporates Mexico City related essential data files associated with Beth Tellman's dissertation: Mapping and Modeling Illicit and Clandestine Drivers of Land Use Change: Urban Expansion in Mexico City and Deforestation in Central America. It contains spatio-temporal datasets covering three domains; i) urban expansion from 1992-2015, ii) district and section electoral records for 6 elections from 2000-2015, iii) land titling (regularization) data for informal settlements from 1997-2012 on private and ejido land. The urban expansion data includes 30m resolution urban land cover for 1992 and 2013 (methods published in Goldblatt et al 2018), and a shapefile of digitized urban informal expansion in conservation land from 2000-2015 using the Worldview-2 satellite. The electoral records include shapefiles with the geospatial boundaries of electoral districts and sections for each election, and .csv files of the number of votes per party for mayoral, delegate, and legislature candidates. The private land titling data includes the approximate (in coordinates) location and date of titles given by the city government (DGRT) extracted from public records (Diario Oficial) from 1997-2012. The titling data on ejido land includes a shapefile of georeferenced polygons taken from photos in the CORETT office or ejido land that has been expropriated by the government, and including an accompany .csv from the National Agrarian Registry detailing the date and reason for expropriation from 1987-2007. Further details are provided in the dissertation and subsequent article publication (Tellman et al 2021). The Mexico City portion of these data were generated via a National Science Foundation sponsored project (No. 1657773, DDRI: Mapping and Modeling Clandestine Drivers of Urban Expansion in Mexico City). The project P.I. is Beth Tellman with collaborators at ASU (B.L Turner II and Hallie Eakin). Other collaborators include the National Autonomous University of Mexico (UNAM), at the Institute of Geography via Dr. Armando Peralta Higuera, who provided support for two students, Juan Alberto Guerra Moreno and Kimberly Mendez Gomez for validating the Landsat urbanization algorithm. Fidel Serrano-Candela, at the UNAM Laboratory of the National Laboratory for Sustainability Sciences (LANCIS) also provided support for urbanization algorithm development and validation, and Rodrigo Garcia Herrera, who provided support for hosting data at LANCIS (at: http://patung.lancis.ecologia.unam.mx/tellman/). Additional collaborators include Enrique Castelán, who provided support for the informal urbanization data from SEDEMA (Ministry of the Environmental for Mexico City). Electoral, land titling, and land zoning data were digitized with support from Juana Martinez, Natalia Hernandez, Alexia Macario Sanchez, Enrique Ruiz Durazo, in collaboration with Felipe de Alba, at CESOP (Center of Social Studies and Public Opinion, at the Mexican Legislative Assembly). The data include geospatial time series data regarding changes in urban land cover, digitized electoral results, land titling, land zoning, and public housing. Additional funding for this work was provided by NSF under Grant No. 1414052, CNH: The Dynamics of Multiscalar Adaptation in Megacities (PI H. Eakin), and the NSF-CONACYT GROW fellowship NSF No. 026257-001 and CONACYT number 291303 (PI Bojórquez). References: Tellman, B., Eakin, H., Janssen, M.A., Alba, F. De, Ii, B.L.T., 2021. The Role of Institutional Entrepreneurs and Informal Land Transactions in Mexico City’s Urban Expansion. World Dev. 140, 1–44. https://doi.org/10.1016/j.worlddev.2020.105374 Goldblatt, R., Stuhlmacher, M.F., Tellman, B., Clinton, N., Hanson, G., Georgescu, M., Wang, C., Serrano-Candela, F., Khandelwal, A.K., Cheng, W.-H., Balling, R.C., 2018. Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover. Remote Sens. Environ. 205, 253–275. https://doi.org/10.1016/j.rse.2017.11.026 
    more » « less