skip to main content


This content will become publicly available on November 9, 2024

Title: The Surprising Dynamics of the McLafferty Rearrangement
We report femtosecond time-resolved measurements of the McLa!erty rearrangement following the strong-field tunnel ionization of 2-pentanone, 4-methyl-2-pentanone, and 4,4-dimethyl-2-pentanone. The pump−probe-dependent yields of the McLa!erty product ion are fit to a biexponential function with fast ("100 fs) and slow ("10 ps) time constants, the latter of which is faster for the latter two compounds. Following nearly instantaneous ionization, the fast time scale is associated with rotation of the molecule to a six-membered cyclic intermediate that facilitates transfer of the !-hydrogen, while the "50−100 times longer time scale is associated with a "-bond rearrangement and bond cleavage between the #- and $-carbons to produce the enol cation. These experimental measurements are supported by ab initio molecular dynamics trajectories, which further confirm the time scale of this important stepwise reaction in mass spectrometry.  more » « less
Award ID(s):
2150173
NSF-PAR ID:
10475871
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
The Journal of Physical Chemistry Letters
Volume:
14
Issue:
44
ISSN:
1948-7185
Page Range / eLocation ID:
10088 to 10093
Subject(s) / Keyword(s):
["Ultrafast laser spectroscopy, bond rearrangement"]
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    By coupling a newly developed quantum-electronic-state-selected supersonically cooled vanadium cation (V + ) beam source with a double quadrupole-double octopole (DQDO) ion–molecule reaction apparatus, we have investigated detailed absolute integral cross sections ( σ 's) for the reactions, V + [a 5 D J ( J = 0, 2), a 5 F J ( J = 1, 2), and a 3 F J ( J = 2, 3)] + CH 4 , covering the center-of-mass collision energy range of E cm = 0.1–10.0 eV. Three product channels, VH + + CH 3 , VCH 2 + + H 2 , and VCH 3 + + H, are unambiguously identified based on E cm -threshold measurements. No J -dependences for the σ curves ( σ versus E cm plots) of individual electronic states are discernible, which may indicate that the spin–orbit coupling is weak and has little effect on chemical reactivity. For all three product channels, the maximum σ values for the triplet a 3 F J state [ σ (a 3 F J )] are found to be more than ten times larger than those for the quintet σ (a 5 D J ) and σ (a 5 F J ) states, showing that a reaction mechanism favoring the conservation of total electron spin. Without performing a detailed theoretical study, we have tentatively interpreted that a weak quintet-to-triplet spin crossing is operative for the activation reaction. The σ (a 5 D 0 , a 5 F 1 , and a 3 F 2) measurements for the VH + , VCH 2 + , and VCH 3 + product ion channels along with accounting of the kinetic energy distribution due to the thermal broadening effect for CH 4 have allowed the determination of the 0 K bond dissociation energies: D 0 (V + –H) = 2.02 (0.05) eV, D 0 (V + –CH 2 ) = 3.40 (0.07) eV, and D 0 (V + –CH 3 ) = 2.07 (0.09) eV. Detailed branching ratios of product ion channels for the titled reaction have also been reported. Excellent simulations of the σ curves obtained previously for V + generated by surface ionization at 1800–2200 K can be achieved by the linear combination of the σ (a 5 D J , a 5 F J , and a 3 F J ) curves weighted by the corresponding Boltzmann populations of the electronic states. In addition to serving as a strong validation of the thermal equilibrium assumption for the populations of the V + electronic states in the hot filament ionization source, the agreement between these results also confirmed that the V + (a 5 D J , a 5 F J , and a 3 F J ) states prepared in this experiment are in single spin–orbit states with 100% purity. 
    more » « less
  2. Despite the myriad Cu-catalyzed nitrene transfer methodologies to form new C–N bonds (e.g.,amination, aziridination), the critical reaction intermediates have largely eluded direct characterization due to their inherent reactivity. Herein, we report the synthesis of dipyrrin-supported Cu nitrenoid adducts, investigate their spectroscopic features, and probe their nitrene transfer chemistry through detailed mechanistic analyses. Treatment of the dipyrrin CuI complexes with substituted organoazides affords terminally ligated organoazide adducts with minimal activation of the azide unit as evidenced by vibrational spectroscopy and single crystal X-ray diffraction. The Cu nitrenoid, with an electronic structure most consistent with a triplet nitrene adduct of CuI, is accessed following geometric rearrangement of the azide adduct from k1-N terminal ligation to k1-N internal ligation with subsequent expulsion of N2. For perfluorinated arylazides, stoichiometric and catalytic C–H amination and aziridination was observed. Mechanistic analysis employing substrate competition reveals an enthalpically-controlled, electrophilic nitrene transfer for primary and secondary C–H bonds. Kinetic analyses for catalytic amination using tetrahydrofuran as a model substrate reveal pseudo-first order kineticsunderrelevantaminationconditionswithafirst-orderdependenceonbothCuandorganoazide. Activation parameters determined from Eyring analysis(DH‡=9.2(2)kcalmol−1,DS‡=−42(2)calmol−1 K−1, DG‡ 298K =21.7(2) kcal mol−1) and parallel kinetic isotope effect measurements (1.10(2)) are consistent with rate-limiting Cu nitrenoid formation, followed by a proposed stepwise hydrogen-atom abstraction and rapid radical recombination to furnish the resulting C–N bond. The proposed mechanism and experimental analysis are further corroborated by density functional theory calculations. Multiconfigurational calculations provide insight into the electronic structure of the catalytically relevant Cu nitrene intermediates. The findings presented herein will assist in the development of future methodology for Cu-mediated C–N bond forming catalysis. 
    more » « less
  3. We investigate the two- and three-body fragmentation of tribromomethane (bromoform, CHBr 3 ) resulting from multiple ionization by 28-femtosecond near-infrared laser pulses with a peak intensity of 6 × 10 14 W cm −2 . The analysis focuses on channels consisting exclusively of ionic fragments, which are measured by coincidence momentum imaging. The dominant two-body fragmentation channel is found to be Br + + CHBr 2 + . Weaker HBr + + CBr 2 + , CHBr + + Br 2 + , CHBr 2+ + Br 2 + , and Br + + CHBr 2 2+ channels, some of which require bond rearrangement prior to or during the fragmentation, are also observed. The dominant three-body fragmentation channel is found to be Br + + Br + + CHBr + . This channel includes both concerted and sequential fragmentation pathways, which we identify using the native frames analysis method. We compare the measured kinetic energy release and momentum correlations with the results of classical Coulomb explosion simulations and discuss the possible isomerization of CHBr 3 to BrCHBr–Br (iso-CHBr 3 ) prior to the fragmentation. 
    more » « less
  4. Taxonomic treatments start with the creation of taxon-by-character matrices. Systematics authors recognized data ambiguity issues in published phenotypic characters and are willing to adopt an ontology-aware authoring tool (Cui et al. 2022). To promote interoperable and reusable taxonomic treatments, we have developed two research prototypes: a web-based application, Character Recorder (http://chrecorder.lusites.xyz/login), to faciliate the use and addition of ontology terms by Carex systematist authors while building their matrices, and a mobile application, Conflict Resolver (Android, https://tinyurl.com/5cfatrz8), to identify potential conflicts among the terms added by the authors and facilitate the resolution of the conflicts. We have completed two usability studies on Character Recorder. a web-based application, Character Recorder (http://chrecorder.lusites.xyz/login), to faciliate the use and addition of ontology terms by Carex systematist authors while building their matrices, and a mobile application, Conflict Resolver (Android, https://tinyurl.com/5cfatrz8), to identify potential conflicts among the terms added by the authors and facilitate the resolution of the conflicts. We have completed two usability studies on Character Recorder. In the one-hour Student Usabiilty Study, 16 third-year biology students with a general introduction to Carex used Character Recorder and Excel to record a set of 11 given characters for two samples (shape of sheath summits = U-shaped/U shaped). In the three-day Expert Usability Study, 7 established Carex systematists and 1 graduate student with expert-level knowledge used Character Recorder to record characters for 1 sample each of Carex canesens and Carex rostrata as they would in their professional life, using real mounted specimens, microscope, reticles, and rulers. Experts activities were not timed but they spent roughly 1.5 days on recording the characters and the rest of time discussing features and improvements. Features of Character Recorder have been reported in 2021 TDWG meeting and we included here only a few figures to highlight its interoperability and reusability features at the time of the usability studies (Fig. 1, Fig. 2, and Fig. 3). The Carex Ontology accompanying Character Recorder was created by extracting terms from Carex treatments of Flora of China and Flora of North America using Explorer of Taxon Concept (Cui et al. 2016) with subsequent manual edits. The design principle of Character Recorder is to encourage standardization and also leave the authors the freedom to do their work. While it took students an average of 6 minutes to recover all the given characters using Microsoft® Excel®, as opposed to 11 minutes using Character Recorder, the total number of unique meaning-bearing words used in their characters was 116 with Excel versus 30 with Character Recorder, showing the power of the latter in reducing synonyms and spelling variations. All students reported that they learned to use Character Recorder quickly and some even thought their use was as fast or faster than using Excel. All preferred Character Recorder to Excel for teaching students to record character data. Nearly all of the students found Character Recorder was more useful for recording clear and consistent data and all students agreed that participating in this study raised their awareness of data variation issues. The expert group consisted of 3, 2, 1, 3 experts in age ranges 20-49, 50-59, 60-69, and >69, respectively. They each recorded over 100 characters for two or more samples. Detailed analysis of their characters is pending, but we have noticed color characters have more variations than other characters (Fig. 4). All experts reported that they learned to use Character Recorder quickly, and 6 out of 8 believed they would not need a tutorial the next time they used it. One out of 8 experts somewhat disliked the feature of reusing others' values ("Use This" in Fig. 2) as it may undermine the objectivity and independence of an author. All experts used Recommended Set of Characters and they liked the term suggestion and illustration features shown in Figs 2, 3. All experts would recommend that their colleagues try Character Recorder and recommended that it be further developed and integrated into every taxonomist's toolbox. Student and expert responses to the National Aeronautics and Space Administration Task Load Index (NASA-TLX, Hart and Staveland 1988) are summarized in Fig. 5, which suggests that, while Character Recorder may incur in a slightly higher cost, the performance it supports outweighs its cost, especially for students. Every piece of the software prototypes and associated resources are open for anyone to access or further develop. We thank all student and expert participants and US National Science Foundation for their support in this research. We thank Harris & Harris and Presses de l'Université Laval for the permissions to use their phenotype illustrations in Character Recorder. 
    more » « less
  5. Abstract

    Electron resonant scattering by whistler‐mode waves is one of the most important mechanisms responsible for electron precipitation to the Earth's atmosphere. The temporal and spatial scales of such precipitation are dictated by properties of their wave source and background plasma characteristics, which control the efficiency of electron resonant scattering. We investigate these scales with measurements from the two low‐altitude Electron Losses and Fields Investigation (ELFIN) CubeSats that move practically along the same orbit, with along‐track separations ranging from seconds to tens of minutes. Conjunctions with the equatorial THEMIS mission are also used to aid our interpretation. We compare the variations in energetic electron precipitation at the sameL‐shells but on successive data collection orbit tracks by the two ELFIN satellites. Variations seen at the smallest inter‐satellite separations, those of less than a few seconds, are likely associated with whistler‐mode chorus elements or with the scale of chorus wave packets (0.1–1 s in time and ∼100 km in space at the equator). Variations between precipitationL‐shell profiles at intermediate inter‐satellite separations, a few seconds to about 1 min, are likely associated with whistler‐mode wave power modulations by ultra‐low frequency waves, that is, with the wave source region (from a few to tens of seconds to a few minutes in time and ∼1,000 km in space at the equator). During these two types of variations, consecutive crossings are associated with precipitationL‐shell profiles very similar to each other. Therefore the spatial and temporal variations at those scales do not change the net electron loss from the outer radiation belt. Variations at the largest range of inter‐satellite separations, several minutes to more than 10 min, are likely associated with mesoscale equatorial plasma structures that are affected by convection (at minutes to tens of minutes temporal variations and ≈[103, 104] km spatial scales). The latter type of variations results in appreciable changes in the precipitationL‐shell profiles and can significantly modify the net electron losses during successive tracks. Thus, such mesoscale variations should be included in simulations of the radiation belt dynamics.

     
    more » « less