skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Functional relationships reveal differences in the water cycle representation of global water models
Abstract Global water models are increasingly used to understand past, present and future water cycles, but disagreements between simulated variables make model-based inferences uncertain. Although there is empirical evidence of different large-scale relationships in hydrology, these relationships are rarely considered in model evaluation. Here we evaluate global water models using functional relationships that capture the spatial co-variability of forcing variables (precipitation, net radiation) and key response variables (actual evapotranspiration, groundwater recharge, total runoff). Results show strong disagreement in both shape and strength of model-based functional relationships, especially for groundwater recharge. Empirical and theory-derived functional relationships show varying agreements with models, indicating that our process understanding is particularly uncertain for energy balance processes, groundwater recharge processes and in dry and/or cold regions. Functional relationships offer great potential for model evaluation and an opportunity for fundamental advances in global hydrology and Earth system research in general.  more » « less
Award ID(s):
1752729
PAR ID:
10475994
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Water
Volume:
1
Issue:
12
ISSN:
2731-6084
Format(s):
Medium: X Size: p. 1079-1090
Size(s):
p. 1079-1090
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Mountain System Recharge processes are significant natural recharge pathways in many arid and semi‐arid mountainous regions. However, Mountain System Recharge processes are often poorly understood and characterized in hydrologic models. Mountains are the primary water supply source to valley aquifers via lateral groundwater flow from the mountain block (Mountain Block Recharge) and focused recharge from mountain streams contributing to focused Mountain Front Recharge at the piedmont zone. Here, we present a multi‐tool isogeochemical approach to characterize mountain flow paths and Mountain System Recharge in the northern Tulare Basin, California. We used groundwater chemistry data to delineate hydrochemical facies and explain the chemical evolution of groundwater from the Sierra Nevada to the Central Valley aquifer. Stable isotopes and radiogenic groundwater tracers validated Mountain System Recharge processes by differentiating focused from diffuse recharge, and estimating apparent groundwater age, respectively. Novel application of End‐Member Mixing Analysis using conservative chemical components revealed three Mountain System Recharge end‐members: (a) evaporated Ca‐HCO3water type associated with focused Mountain Front Recharge, (b) non‐evaporated Ca‐HCO3and Na‐HCO3water types with short residence times associated with shallow Mountain Block Recharge, and (c) Na‐HCO3groundwater type with long residence time associated with deep Mountain Block Recharge. We quantified the contribution of each Mountain System Recharge process to the valley aquifer by calculating mixing ratios. Our results show that deep Mountain Block Recharge is a significant recharge component, representing 31%–53% of the valley groundwater. Greater hydraulic connectivity between the Sierra Nevada and Central Valley has significant implications for parameterizing groundwater flow models. Our framework is useful for understanding Mountain System Recharge processes in other snow‐dominated mountain watersheds. 
    more » « less
  2. Abstract Groundwater recharge moves downward from the land surface and reaches the groundwater to replenish aquifers. Despite its importance, methods to directly measure recharge remain cost and time‐intensive. Recharge is usually estimated using indirect methods, such as the widely used water‐table fluctuation (WTF) method, which is based on the premise that rises in groundwater levels are due to recharge. In the WTF method, recharge is calculated as the difference between the observed groundwater hydrograph and the hydrograph obtained in the absence of water input. The hydrograph in the absence of rise‐producing input is estimated based on a characteristic master recession curve (MRC), which describes an average behavior for a declining water‐table. Previous studies derive MRC using recession data from all seasons. We hypothesize that for sites where groundwater table is shallow, using recession data from periods with high groundwater‐influenced evapotranspiration (ET) rates versus all periods will yield significantly different MRC, and consequently different estimates of recharge. We test this hypothesis and show that groundwater recession rates are significantly greater in warm months when the groundwater‐influenced ET rates are higher. Since obtaining seasonal recession rates is challenging for locations with a limited amount of data and is prohibitive if it is to be obtained for any given season of a particular year, we propose two novel parsimonious methods to obtain recession time constants for distinct seasons. The proposed methods show the potential to significantly improve the estimates of seasonal recession time constants and provide a better understanding of seasonal variations in recharge estimates. 
    more » « less
  3. null (Ed.)
    Abstract. Billions of people rely on groundwater as being an accessible source of drinking water and for irrigation, especially in times of drought. Its importance will likely increase with a changing climate. It is still unclear, however, how climate change will impact groundwater systems globally and, thus, the availability of this vital resource. Groundwater recharge is an important indicator for groundwater availability, but it is a water flux that is difficult to estimate as uncertainties in the water balance accumulate, leading to possibly large errors in particular in dry regions. This study investigates uncertainties in groundwater recharge projections using a multi-model ensemble of eight global hydrological models (GHMs) that are driven by the bias-adjusted output of four global circulation models (GCMs). Pre-industrial and current groundwater recharge values are compared with recharge for different global warming (GW) levels as a result of three representative concentration pathways (RCPs). Results suggest that projected changes strongly vary among the different GHM–GCM combinations, and statistically significant changes are only computed for a few regions of the world. Statistically significant GWR increases are projected for northern Europe and some parts of the Arctic, East Africa, and India. Statistically significant decreases are simulated in southern Chile, parts of Brazil, central USA, the Mediterranean, and southeastern China. In some regions, reversals of groundwater recharge trends can be observed with global warming. Because most GHMs do not simulate the impact of changing atmospheric CO2 and climate on vegetation and, thus, evapotranspiration, we investigate how estimated changes in GWR are affected by the inclusion of these processes. In some regions, inclusion leads to differences in groundwater recharge changes of up to 100 mm per year. Most GHMs with active vegetation simulate less severe decreases in groundwater recharge than GHMs without active vegetation and, in some regions, even increases instead of decreases are simulated. However, in regions where GCMs predict decreases in precipitation and where groundwater availability is the most important, model agreement among GHMs with active vegetation is the lowest. Overall, large uncertainties in the model outcomes suggest that additional research on simulating groundwater processes in GHMs is necessary. 
    more » « less
  4. Shallow groundwater in the Prairie Pothole Region (PPR) is recharged predominantly by snowmelt in the spring and may supply water for evapotranspiration through the summer/fall. This two-way exchange is underrepresented in land-surface models. Furthermore, the impacts of climate change on the groundwater recharge are uncertain. In this paper, we use a coupled land and groundwater model to investigate the hydrologic cycle of shallow groundwater in the PPR and study its response to climate change at the end of the 21st century. The results show that the model reasonably simulates the water table depth (WTD) and the timing of recharge processes, but underestimates the seasonal variation of WTD, due to mismatches of the soil types between observations and the model. The most significant change under future climate occurs in the winter, when warmer temperature changes the rain/snow partitioning, delay the time for snow accumulation/soil freezing while bring forward early melting/thawing. Such changes lead to an earlier start to a longer recharge season, but with lower recharge rates. Different signals are shown in the eastern and western PPR in the future summer, with reduced precipitation and drier soils in the east but little change in the west. The annual recharge increased by 25% and 50% in the eastern and western PPR, respectively. Additionally, we found the mean and seasonal variation of the simulated WTD are sensitive to soil properties and fine-scale soil information is needed to improve groundwater simulation on regional scale. 
    more » « less
  5. Abstract Accurate groundwater representation in land surface models (LSMs) is vital for water and energy cycle studies, water resource assessments, and climate projections. Yet, many LSMs do not consider key processes including lateral groundwater flow and aquifer pumping, especially at the global scale. This study simulates these processes using an enhanced version of the Community Land Model (CLM5) and evaluates their roles at three spatial resolutions (0.5°, 0.25°, 0.1°). Results show that lateral flow strongly modulates water table depth and capillary rise at all resolutions. The magnitude of mean lateral flow increases from 25 mm/year at 0.5° to 36 mm/year at 0.25°, and 52 mm/year at 0.1° resolution, with pumping inducing lateral flow even at 0.5° (∼50 km), a typical grid size in global LSMs. Further, lateral flow alters runoff in regions with high recharge and shallow water table (e.g., eastern North America and Amazon basin), and soil moisture and ET in regions with comparatively low recharge and deeper water table (e.g., western North America, central Asia, and Australia) through enhanced capillary rise. Runoff alteration by lateral flow increases substantially with resolution, from a maximum of 15 mm/month at 0.5° to 20 mm/month and 25 mm/month at 0.25° and 0.1°, respectively; the impact of resolution on soil moisture and ET is less pronounced. While the model does not fully capture deeper water tables—warranting further enhancements—it provides valuable insights on how lateral groundwater flow impacts land surface processes, highlighting the importance of lateral groundwater flow and pumping in global LSMs. 
    more » « less