skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A New Event‐Based Error Decomposition Scheme for Satellite Precipitation Products
Abstract Understanding the nature and origin of errors in satellite precipitation products is important for applications and product improvement. Here we propose a new error decomposition scheme incorporating precipitation event (continuous rainy periods) information to characterize satellite errors. Under this framework, the errors are attributed to the inaccuracies in event occurrence, timing (event start/end time), and intensity. The Integrated MultisatellitE Retrieval for Global Precipitation Measurement (IMERG) is used as our test product to apply the method over CONUS. The above‐listed factors contribute approximately 30%, 20%, and 50% to the total bias, respectively. Significant asymmetry exists in the temporal distribution of biases throughout events: early event endings cause threefold more precipitation amount bias than late event beginnings, while early event beginnings cause fourfold more bias than late event endings. Dominant contributors vary across seasons and regions. The proposed error decomposition provides insight into sources of error for improved retrievals.  more » « less
Award ID(s):
2324008
PAR ID:
10476061
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
22
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Satellite precipitation retrieval is inherently an underdetermined inverse problem where additional physical constraints could substantially enhance accuracy. While previous studies have explored static (pixel‐based/spatial‐context‐based) environmental variables at discrete satellite observation times, their temporal dynamic information remains underutilized. Building on our earlier finding that retrieval errors depend on storm progression (event stage), we propose a new, physically interpretable mechanism for improving retrievals, namely, leveraging environmental variables' temporal dynamics as proxies for event stages. Using IMERG satellite product and GV‐MRMS as ground‐truth over CONUS (2018–2020), we first demonstrate robust coevolution patterns of environmental variables and satellite errors throughout events, and show that these variables' temporal gradients reliably infer event stages. We then demonstrate that incorporating these variables and their gradients into a machine‐learning post‐processing framework improves retrieval accuracy. This work inspires and guides more thorough utilization of spatiotemporal atmospheric fields encoding rich physical information within advanced machine‐learning frameworks for further algorithm improvement. 
    more » « less
  2. Abstract Satellite precipitation products, as all quantitative estimates, come with some inherent degree of uncertainty. To associate a quantitative value of the uncertainty to each individual estimate, error modeling is necessary. Most of the error models proposed so far compute the uncertainty as a function of precipitation intensity only, and only at one specific spatiotemporal scale. We propose a spectral error model that accounts for the neighboring space–time dynamics of precipitation into the uncertainty quantification. Systematic distortions of the precipitation signal and random errors are characterized distinctively in every frequency–wavenumber band in the Fourier domain, to accurately characterize error across scales. The systematic distortions are represented as a deterministic space–time linear filtering term. The random errors are represented as a nonstationary additive noise. The spectral error model is applied to the IMERG multisatellite precipitation product, and its parameters are estimated empirically through a system identification approach using the GV-MRMS gauge–radar measurements as reference (“truth”) over the eastern United States. The filtering term is found to be essentially low-pass (attenuating the fine-scale variability). While traditional error models attribute most of the error variance to random errors, it is found here that the systematic filtering term explains 48% of the error variance at the native resolution of IMERG. This fact confirms that, at high resolution, filtering effects in satellite precipitation products cannot be ignored, and that the error cannot be represented as a purely random additive or multiplicative term. An important consequence is that precipitation estimates derived from different sources shall not be expected to automatically have statistically independent errors. Significance StatementSatellite precipitation products are nowadays widely used for climate and environmental research, water management, risk analysis, and decision support at the local, regional, and global scales. For all these applications, knowledge about the accuracy of the products is critical for their usability. However, products are not systematically provided with a quantitative measure of the uncertainty associated with each individual estimate. Various parametric error models have been proposed for uncertainty quantification, mostly assuming that the uncertainty is only a function of the precipitation intensity at the pixel and time of interest. By projecting satellite precipitation fields and their retrieval errors into the Fourier frequency–wavenumber domain, we show that we can explicitly take into account the neighboring space–time multiscale dynamics of precipitation and compute a scale-dependent uncertainty. 
    more » « less
  3. null (Ed.)
    Abstract Many existing models that predict landslide hazards utilize ground-based sources of precipitation data. In locations where ground-based precipitation observations are limited (i.e., a vast majority of the globe), or for landslide hazard models that assess regional or global domains, satellite multisensor precipitation products offer a promising near-real-time alternative to ground-based data. NASA’s global Landslide Hazard Assessment for Situational Awareness (LHASA) model uses the Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG) product to issue hazard “nowcasts” in near–real time for areas that are currently at risk for landsliding. Satellite-based precipitation estimates, however, can contain considerable systematic bias and random error, especially over mountainous terrain and during extreme rainfall events. This study combines a precipitation error modeling framework with a probabilistic adaptation of LHASA. Compared with the routine version of LHASA, this probabilistic version correctly predicts more of the observed landslides in the study region with fewer false alarms by high hazard nowcasts. This study demonstrates that improvements in landslide hazard prediction can be achieved regardless of whether the IMERG error model is trained using abundant ground-based precipitation observations or using far fewer and more scattered observations, suggesting that the approach is viable in data-limited regions. Results emphasize the importance of accounting for both random error and systematic satellite precipitation bias. The approach provides an example of how environmental prediction models can incorporate satellite precipitation uncertainty. Other applications such as flood and drought monitoring and forecasting could likely benefit from consideration of precipitation uncertainty. 
    more » « less
  4. In this work, we present an unexpected connection between gradual typing and type error debugging. Namely, we illustrate that gradual typing provides a natural way to defer type errors in statically ill-typed programs, providing more feedback than traditional approaches to deferring type errors. When evaluating expressions that lead to runtime type errors, the usefulness of the feedback depends on blame tracking, the defacto approach to locating the cause of such runtime type errors. Unfortunately, blame tracking suffers from the bias problem for type error localization in languages with type inference. We illustrate and formalize the bias problem for blame tracking, present ideas for adapting existing type error debugging techniques to combat this bias, and outline further challenges. 
    more » « less
  5. Atmospheric model systems, such as those used for weather forecast and reanalysis production, often have significant and systematic errors in their representation of the Arctic surface energy budget and its components. The newly available observation data of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition (2019/2020) enable a range of model analyses and validation in order to advance our understanding of potential model deficiencies. In the present study, we analyze deficiencies in the surface radiative energy budget over Arctic sea ice in the ERA5 global atmospheric reanalysis by comparing against the winter MOSAiC campaign data, as well as, a pan-Arctic level-2 MODIS ice surface temperature remote sensing product. We find that ERA5 can simulate the timing of radiatively clear periods, though it is not able to distinguish the two observed radiative Arctic winter states, radiatively clear and opaquely cloudy, in the distribution of the net surface radiative budget. The ERA5 surface temperature over Arctic sea ice has a conditional error with a positive bias in radiatively clear conditions and a negative bias in opaquely cloudy conditions. The mean surface temperature error is 4°C for radiatively clear situations at MOSAiC and up to 15°C in some parts of the Arctic. The spatial variability of the surface temperature, given by 4 observation sites at MOSAiC, is not captured by ERA5 due to its spatial resolution but represented in the level-2 satellite product. The sensitivity analysis of possible error sources, using satellite products of snow depth and sea ice thickness, shows that the positive surface temperature errors during radiatively clear events are, to a large extent, caused by insufficient sea ice thickness and snow depth representation in the reanalysis system. A positive bias characterizes regions with ice thickness greater than 1.5 m, while the negative bias for thinner ice is partly compensated by the effect of snow. 
    more » « less