skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Future dust concentration over the Middle East and North Africa region under global warming and stratospheric aerosol intervention scenarios

Abstract. The Middle East and North Africa (MENA) region is the dustiestregion in the world, and understanding the projected changes in the dustconcentrations in the region is crucial. Stratospheric aerosolinjection (SAI) geoengineering aims to reduce global warming by increasingthe reflection of a small amount of the incoming solar radiation to space,hence reducing the global surface temperatures. Using the output fromthe Geoengineering Large Ensemble Project (GLENS), we show areduction in the dust concentration in the MENA region under both the globalwarming (RCP8.5) and GLENS-SAI scenarios compared to the present-dayclimate. This reduction in dust over the whole MENA region is stronger underthe SAI scenario, except over dust hotspots and for the dry season. In otherwords, in the summer, with the strongest dust events, more reduction has beenprojected for the global warming scenario compared to the SAI scenario.The maximum reduction in the dust concentrations in the MENA region (underboth global warming and SAI) is due to the weakening of the dusthotspot emissions from the sources of the Middle East. Further analysis ofthe differences in the surface temperature, soil water, precipitation, leafarea index and near-surface wind speed provides some insights into theunderlying physical mechanisms that determine the changes in the future dustconcentrations in the MENA region. Detailed correlation analysis over dusthotspots indicates that lower future dust concentrations are controlled bylower wind speed and higher precipitation in these regions under boththe RCP8.5 and SAI scenarios.

 
more » « less
Award ID(s):
2028541 2017113
NSF-PAR ID:
10476084
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Copernicus Publications
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
23
Issue:
18
ISSN:
1680-7324
Page Range / eLocation ID:
10677 to 10695
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The response of the Indian Summer Monsoon (ISM) to global warming, solar geoengineering and its termination is examined using the multi-model mean of seven global climate model simulations from G2 experiment of the Geoengineering Model Intercomparison Project. Under the global warming scenario, land–ocean temperature contrasts and low-level monsoon circulation progressively strengthen accompanied by enhanced precipitation over the Indian subcontinent. Notably, in the solar geoengineered scenario, marginal surface cooling is projected over the majority of the ISM region, and there is strengthening of both upper and lower level circulation. However, preferential precipitation near Western Ghats leads to dry bias over majority of Indian land. Upon the termination of the geoengineering, the climatic conditions—temperature, precipitation, winds and moisture would abruptly change to what it would have been under the global warming scenario. Thus, this may be important to note that such changes may need attention for the future mitigation and adaptation purposes if solar geoengineering is required to implement in future. 
    more » « less
  2. Abstract. We quantify future changes in wildfire burned area and carbon emissions inthe 21st century under four Shared Socioeconomic Pathways (SSPs) scenariosand two SSP5-8.5-based solar geoengineering scenarios with a target surfacetemperature defined by SSP2-4.5 – solar irradiance reduction (G6solar) andstratospheric sulfate aerosol injections (G6sulfur) – and explore themechanisms that drive solar geoengineering impacts on fires. This study isbased on fully coupled climate–chemistry simulations with simulatedoccurrence of fires (burned area and carbon emissions) using the WholeAtmosphere Community Climate Model version 6 (WACCM6) as the atmosphericcomponent of the Community Earth System Model version 2 (CESM2). Globally,total wildfire burned area is projected to increase over the 21st centuryunder scenarios without geoengineering and decrease under the twogeoengineering scenarios. By the end of the century, the two geoengineeringscenarios have lower burned area and fire carbon emissions than not onlytheir base-climate scenario SSP5-8.5 but also the targeted-climate scenarioSSP2-4.5. Geoengineering reduces wildfire occurrence by decreasing surfacetemperature and wind speed and increasing relative humidity and soil water,with the exception of boreal regions where geoengineering increases theoccurrence of wildfires due to a decrease in relative humidity and soilwater compared with the present day. This leads to a global reduction in burnedarea and fire carbon emissions by the end of the century relative to theirbase-climate scenario SSP5-8.5. However, geoengineering also yieldsreductions in precipitation compared with a warming climate, which offsetssome of the fire reduction. Overall, the impacts of the different drivingfactors are larger on burned area than fire carbon emissions. In general,the stratospheric sulfate aerosol approach has a stronger fire-reducingeffect than the solar irradiance reduction approach.

     
    more » « less
  3. Abstract

    Atmospheric rivers (ARs) impacting western North America are analyzed under climate intervention applying stratospheric aerosol injections (SAI) using simulations produced by the Whole Atmosphere Community Climate Model. Sulfur dioxide injections are strategically placed to maintain present-day global, interhemispheric, and equator-to-pole surface temperatures between 2020 and 2100 using a high forcing climate scenario. Three science questions are addressed: (1) How will western North American ARs change by the end of the century with SAI applied, (2) How is this different from 2020 conditions, and (3) How will the results differ with no future climate intervention. Under SAI, ARs are projected to increase by the end of the 21st century for southern California and decrease in the Pacific Northwest and coastal British Columbia, following changes to the low-level wind. Compared to 2020 conditions, the increase in ARs is not significant. The character of AR precipitation changes under geoengineering results in fewer extreme rainfall events and more moderate ones.

     
    more » « less
  4. Abstract

    Geoengineering methods could potentially offset aspects of greenhouse gas‐driven climate change. However, before embarking on any such strategy, a comprehensive understanding of its impacts must be obtained. Here, a 20‐member ensemble of simulations with the Community Earth System Model with the Whole Atmosphere Community Climate Model as its atmospheric component is used to investigate the projected hydroclimate changes that occur when greenhouse gas‐driven warming, under a high emissions scenario, is offset with stratospheric aerosol geoengineering. Notable features of the late 21st century hydroclimate response, relative to present day, include a reduction in precipitation in the Indian summer monsoon, over much of Africa, Amazonia and southern Chile and a wintertime precipitation reduction over the Mediterranean. Over most of these regions, the soil desiccation that occurs with global warming is, however, largely offset by the geoengineering. A notable exception is India, where soil desiccation and an approximate doubling of the likelihood of monsoon failures occurs. The role of stratospheric heating in the simulated hydroclimate change is determined through additional experiments where the aerosol‐induced stratospheric heating is imposed as a temperature tendency, within the same model, under present day conditions. Stratospheric heating is found to play a key role in many aspects of projected hydroclimate change, resulting in a general wet‐get‐drier, dry‐get‐wetter pattern in the tropics and extratropical precipitation changes through midlatitude circulation shifts. While a rather extreme geoengineering scenario has been considered, many, but not all, of the precipitation features scale linearly with the offset global warming.

     
    more » « less
  5. Abstract

    Climate change has been projected to increase the intensity and magnitude of extreme temperature in Indonesia. Solar radiation management (SRM) has been proposed as a strategy to temporarily combat global warming, buying time for negative emissions. Although the global impacts of SRM have been extensively studied in recent years, regional impacts, especially in the tropics, have received much less attention. This article investigates the potential stratospheric sulphate aerosol injection (SAI) to modify mean and extreme temperature, as well as the relative humidity and wet bulb temperature (WBT) change over Indonesian Maritime Continent (IMC) based on simulations from three different earth system models. We applied a simple downscaling method and corrected the bias of model output to reproduce historical temperatures and relative humidity over IMC. We evaluated changes in geoengineering model intercomparison project (GeoMIP) experiment G4, an SAI experiment in 5 Tg of SO2into the equatorial lower stratosphere between 2020 and 2069, concurrent with the RCP4.5 emissions scenario. G4 is able to significantly reduce the temperature means and extremes, and although differences in magnitude of response and spatial pattern occur, there is a generally consistent response. The spatial response of changes forced by RCP4.5 scenario and G4 are notably heterogeneous in the archipelago, highlighting uncertainties that would be critical in assessing socio‐economic consequences of both doing, and not doing G4. In general, SAI has bigger impacts in reducing temperatures over land than oceans, and the southern monsoon region shows more variability. G4 is also effective at reducing the likelihood of WBT > 27°C events compared with RCP4.5 after some years of SAI deployment as well as during the post‐termination period of SAI. Regional downscaling may be an effective tool in obtaining policy‐relevant information about local effects of different future scenarios involving SAI.

     
    more » « less