skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 AM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: From Assessment to Research: Evolution of the Study of a Two-Day Intervention for ChemE Sophomores
This paper describes the evolution of our assessment of a two-day workshop for rising chemical engineering (ChemE) sophomores into a more rigorous evaluation of the mechanisms behind its impact. In 2016, we implemented a voluntary two-day workshop (the "ChemE Camp") for rising chemical engineering sophomore students to try to improve their retention in our program. To assess the impact of the camp, we developed and administered surveys to camp attendees before the camp and to all ChemE students at the beginning and toward the end of the sophomore year. Student feedback about the camp was overwhelmingly positive, and the survey results indicated that students who attended the camp entered the sophomore year feeling more prepared for the curriculum and more comfortable with the ChemE major than those who did not. Camp attendees also reported a larger network of potential study partners than non-attendees and performed better in the Material and Energy Balances (MEB) course. To explain these observed effects, we enlisted the help of an engineering education researcher. After review of the relevant literature in learning theories, we decided to focus on the constructs of self-efficacy and social support. We then improved the design and rigor of our study and refined our surveys by introducing subscales from validated instruments of self-efficacy and social integration. Preliminary results suggest that the camp is having a positive effect on the self-efficacy, social and academic integration, and intent to persist of the students who attend, and data collection is ongoing to determine whether these effects are lasting. Here we describe our journey from the original development of the camp and assessment tools to our current research examining the factors that affect the achievement and persistence of ChemE sophomore students.  more » « less
Award ID(s):
2025035
PAR ID:
10476179
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ASEE Conferences
Date Published:
Format(s):
Medium: X
Location:
Virtual On line
Sponsoring Org:
National Science Foundation
More Like this
  1. We are assessing the impact of an intervention (a two-day voluntary workshop) on the specific factors of self-efficacy and student integration. This workshop, called the “ChemE Camp”, takes place just before the start of fall classes and includes team-building exercises, presentations from faculty about upcoming classes, a hands-on project, a lab tour, presentations from upper-level students and alumni about their experiences in the curriculum and in industry, information about academic advising and the career fair, and some recreational games. Students attending the camp learn more about chemical engineering courses and the profession and also have the opportunity to meet peers and interact with faculty and upper-level students. We hypothesized that the activities included in the camp would positively impact on students’ self-efficacy and social integration, factors which have been shown in other studies to significantly influence student experience and student success. The effects of the intervention were assessed using surveys administered to students at the start of the camp. These surveys included published subscales used in the study of self-efficacy and social and academic integration. The same surveys were administered to all second-year chemical engineering students at the beginning of the academic year (three days after the beginning of the camp) and the end of the academic year (approximately eight months later). Data collected from the previous three academic years indicate a statistically significant increase in the chemical engineering self-efficacy, coping self-efficacy, and social and academic integration ratings for students who attend the camp and these effects appear to largely be maintained throughout the sophomore year. Non-attendees enter the sophomore year with lower average ratings in these factors and show little change over the course of the year. Students’ intent to persist in the chemical engineering major was also assessed by these surveys, and while the camp attendees’ ratings showed almost no change from just prior to the camp to just after, their ratings exhibited a substantial, statistically-significant increase during the sophomore year. Non-attendees entered the year with a similar average rating to the attendees but showed a much more modest increase over the course of the year. We continue to collect data from both student survey responses and academic records, with the goal of eventually using path analysis to establish the relationships between the factors of self-efficacy and student integration and the outcomes of academic performance and persistence for second-year chemical engineering students. We currently have insufficient data to power such an analysis, but our available data suggest that the intervention is having a positive impact on these factors. 
    more » « less
  2. As part of our study examining the factors that influence the academic performance and persistence of second-year chemical engineering students, we are assessing the impact of an intervention (a two-day voluntary workshop) on the specific factors of self-efficacy and social support. This workshop, called the “ChemE Camp”, is held just before the start of fall classes and includes team-building exercises, presentations from faculty about upcoming classes, a lab tour, presentations from upper-level students and alumni about their experiences in the curriculum and in industry, information about academic advising and the career fair, and some recreational games. Students who attend the camp can learn more about chemical engineering courses and the profession and also have the opportunity to meet peers and interact with faculty and upper-level students. It was hypothesized that the activities included in the camp would have a positive impact on students’ self-efficacy and social integration, factors which have been shown in other studies to significantly influence student experience and student success. To assess the effect of the intervention, surveys were administered to students at the start of the camp. These surveys included published subscales used in the study of self-efficacy and social and academic integration. These same surveys were also administered to all second-year chemical engineering students at the beginning of the academic year (three days after the beginning of the camp) and the end of the academic year (approximately eight months later). Data collected from the previous two academic years indicate a statistically significant increase in the chemical engineering self-efficacy, coping self-efficacy, and social and academic integration ratings for students who attend the camp. These effects appear to largely be maintained throughout the sophomore year and are distinct from the results observed for nonattendees. 
    more » « less
  3. Despite the intent to advance engineering education with NGSS, teachers across all grades lack self-efficacy in engineering pedagogy. Instructional shifts envisioned by NGSS, especially with inclusion of engineering, require substantial learning by teachers. For rural schools, due to geographic location and smaller collegial networks, there are challenges in providing content-specific professional learning. This project gathered researchers from four states to provide PL aligned to NGSS and delivered remotely to 150 rural teachers. In summer 2023, experts led a five-day workshop which modeled shifts called for by NGSS (e.g., equitable, discourse-rich, phenomena-based) and provided opportunities to experience next-generation teaching and learning. Likert scale surveys were collected before and after the workshop to gauge self-efficacy regarding teaching science and engineering. We found that science-focused PL, with engineering embedded rather than as stand-alone component, afforded growth in self-efficacy for teaching engineering. Pre-workshop surveys showed that teachers had higher self-efficacy towards teaching science than teaching engineering (Wilcoxon signed-rank; p<.001). Positive attitudes toward teaching science were leveraged to provide PL and pre-workshop to post-workshop analysis showed growth in self-efficacy towards teaching engineering (p<.001). Results are important for professional learning around teaching engineering, for professional learning with rural teachers, and for remote access to professional learning. 
    more » « less
  4. Program leaders put a tremendous amount of thought into how they recruit students for engineering summer camps. Recruitment methods can include information sessions, established partnerships with school districts, and teacher or school counselor nominations of students. This study seeks to assess if the methods used to recruit students broaden participation or have any impact on students’ perceptions of engineering. Two identical week-long summer camps were hosted by the University of Texas at Austin (UT Austin) in the summer of 2022. Camps were entirely free for all campers. A specific goal of the camp was to promote engineering as a career pathway for students from groups that have been historically excluded from STEM majors. Campers were rising 8th and 9th grade students in two cities near UT Austin; this age was intentionally identified as students who have sufficient STEM backgrounds to engage in meaningful engineering design challenges, and who are also at a critical inflection point with respect to decisions that put them on a trajectory to study engineering in college. Summer camp topics ranged from additive manufacturing to the chemical properties of water proofing, and students did activities such as constructing a prosthetic limb from recovered materials or designing an electronic dance game pad. In one camp session, students primarily found out about the camp by being nominated by counselors at their schools, with an intentional focus on recruiting students who might not otherwise be exposed to engineering. In the other camp session, parents signed up campers after hearing about the camp via information sent through the schools. All students who applied were accepted to the camps. Identical pre- and post-camp surveys asked campers questions about their knowledge of what engineers do, their interest in math and science, and what factors are important to them when choosing a career. Survey analysis showed that there were statistically significant differences in answers to questions between the groups in the pre-camp surveys, but post-camp surveys show that these differences disappeared after participating in the summer camp. Students whose parents directly enrolled them in the camp had higher pre-camp interest in science and technology; thus, counselor nominations may be a method to recruit students who might not have been interested in engineering had they not attended the camp. Additionally, prior to participating, campers recruited via counselor nominations had a narrower view of what engineers do than the parent-enrolled campers, but after camp the two groups had similar perceptions of what engineers do. The results of this study confirm literature findings regarding the importance of exposing young learners to engineering as a profession and broaden their views of opportunities in this field. The recruitment methods used for these camps show that nomination-based recruitment methods have the potential for greater impact on changing students’ engineering trajectories. 
    more » « less
  5. Women and racially and ethnically minoritized populations are underrepresented in science, technology, engineering, and mathematics (STEM). Out-of-school time programs like summer camps can provide positive science experiences that may increase self-efficacy and awareness of STEM opportunities. Such programs often use the same high-impact practices used in K–12 classrooms including relating concepts to real-world examples, engaging students as active participants in inquiry-driven projects, and facilitating learning in a cooperative context. They additionally provide opportunities for engaging in STEM without fear of failure, offer a community of mentors, and allow families to become more involved. We designed a summer camp for middle schoolers who identified as girls, low-income, and as a minoritized race or ethnicity. We describe the design of the camp as well as the results from a simple pre- and post-camp questionnaire that examined each camper’s relationship to science, scientific self-efficacy, and interest in having a job in STEM. We found an increase in self-efficacy in camp participants, which is important because high scientific self-efficacy predicts student performance and persistence in STEM, especially for girls. We did not detect an increase in interest in pursuing a STEM job, likely because of already high values for this question on the pre-camp survey. We add to the growing body of work recognizing the potential of out-of-school time STEM programs to increase scientific self-efficacy for girls and racially minoritized students. Tweet: Summer camp for minoritized middle-school girls increases scientific self-efficacy, a characteristic that may be important for removing barriers to participation in STEM. 
    more » « less