Acoustic streaming has been widely used in microfluidics to manipulate various micro−/nano-objects. In this work, acoustic streaming activated by interdigital transducers (IDT) immersed in highly viscous oil is studied numerically and experimentally. In particular, we developed a modeling strategy termed the “slip velocity method” that enables a 3D simulation of surface acoustic wave microfluidics in a large domain (4 × 4 × 2 mm 3 ) and at a high frequency (23.9 MHz). The experimental and numerical results both show that on top of the oil, all the acoustic streamlines converge at two horizontal stagnation points above the two symmetric sides of the IDT. At these two stagnation points, water droplets floating on the oil can be trapped. Based on these characteristics of the acoustic streaming field, we designed a surface acoustic wave microfluidic device with an integrated IDT array fabricated on a 128° YX LiNbO 3 substrate to perform programmable, contactless droplet manipulation. By activating IDTs accordingly, the water droplets on the oil can be moved to the corresponding traps. With its excellent capability for manipulating droplets in a highly programmable, controllable manner, our surface acoustic wave microfluidic devices are valuable for on-chip contactless sample handling and chemical reactions.
more »
« less
Flexible Piezoelectric Wave-Based Sensor: Numerical Analysis And Validation
The demand for acoustic wave-based devices has been rapidly increasing in the aerospace, chemical, and biological fields due to their versatility towards sensing measurands. This paper explores the characteristics and effectiveness of acoustic wave-based two-port sensors designed with bidirectional IDT electrodes placed in different configurations, such as surface mounted or embedded inside the substrate, through numerical and experimental analysis. The numerical study involves 3D modeling of the sensor design to investigate wave characteristics by utilizing time-domain, i.e., time delay and wave patterns, and frequency-domain analysis, i.e., scattering parameter study. The sensor made of polyvinylidene fluoride polymer is modeled to ensure the concordance between the theoretical and numerical results as well as a preliminary experimental result obtained from transparent piezoelectric films. The coupling of modes theoretical model is used to obtain the device’s frequency response by a transmission matrix cascading technique. These investigated results will stand as guidance and facilitate defining an approach that can predict the behavior of the sensor with a specific design under different operating environments and expand its viability towards multi-functional devices that are reliable and sensitive to intended measurands.
more »
« less
- Award ID(s):
- 2018853
- PAR ID:
- 10476225
- Publisher / Repository:
- American Society of Mechanical Engineers
- Date Published:
- ISBN:
- 978-0-7918-8627-4
- Format(s):
- Medium: X
- Location:
- Dearborn, Michigan, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Interdigitated transducer devices provide an advantageous platform to study stress-enhanced interfacial phenomena at elevated temperatures but require a thorough understanding of temperature-dependent material properties. In this study, the temperature dependence of the piezoelectric coefficient for gallium arsenide is determined from 22 ℃ to 177 ℃. Experimental scattering parameter responses are measured for a two-port surface acoustic wave resonator at different temperatures and piezoelectric coefficient values are extracted using a frequency-domain finite element method simulation. Device measurements are taken using an interdigitated transducer fabricated on semi-insulating GaAs(100), oriented in the 〈110〉 direction and device resonant frequencies are shown to decrease with increasing temperature. The experimental scattering response is used to reconcile the simulated scattering response and extract the 𝑒14 piezoelectric coefficient, which is shown to increase linearly with temperature. Using the extracted 𝑒14, surface acoustic wave analysis is completed to study the magnitude of bulk stress values and surface displacement over the experimental temperature range produced by a standing surface acoustic wave field. Surface displacement measurements are taken at room temperature using contact-mode AFM, which corroborate the simulation predictions. The modeling results demonstrate an interdigitated transducers potential as an experimental stage to study surface and bulk stress effects on temperature-sensitive phenomena.more » « less
-
null (Ed.)Interdigitated transducer devices provide an advantageous platform to study stress-enhanced interfacial phenomena at elevated temperatures but require a thorough understanding of temperature-dependent material properties. In this study, the temperature dependence of the piezoelectric coefficient for gallium arsenide is determined from 22 ℃ to 177 ℃. Experimental scattering parameter responses are measured for a two-port surface acoustic wave resonator at different temperatures and piezoelectric coefficient values are extracted using a frequency-domain finite element method simulation. Device measurements are taken using an interdigitated transducer fabricated on semi-insulating GaAs(100), oriented in the 〈110〉 direction and device resonant frequencies are shown to decrease with increasing temperature. The experimental scattering response is used to reconcile the simulated scattering response and extract the e_14 piezoelectric coefficient, which is shown to increase linearly with temperature. Using the extracted e_14, surface acoustic wave analysis is completed to study the magnitude of bulk stress values and surface displacement over the experimental temperature range produced by a standing surface acoustic wave field. Surface displacement measurements are taken at room temperature using contact-mode AFM, which corroborate the simulation predictions. The modeling results demonstrate an interdigitated transducers potential as an experimental stage to study surface and bulk stress effects on temperature-sensitive phenomena.more » « less
-
Analysis of interdigitated transducers often relies on phenomenological models to approximate device electrical performance. While these approaches prove essential for signal processing applications, phenomenological models provide limited information on the device’s mechanical response and physical characteristics of the generated acoustic field. Finite element method modeling, in comparison, offers a robust platform to study the effects of the full device geometry on critical performance parameters of interdigitated transducer devices. In this study, we fabricate a surface acoustic wave resonator on semi-insulating GaAs [Formula: see text], which consists of an interdigitated transducer and acoustic mirror assembly. The device is subsequently modeled using fem software. A vector network analyzer is used to measure the experimental device scattering response, which compares well with the simulated results. The wave characteristics of the experimental device are measured by contact-mode atomic force microscopy, which validates the simulation’s mechanical response predictions. We further show that a computational parametric analysis can be used to optimize device designs for series resonance frequency, effective coupling coefficient, quality factor, and maximum acoustic surface displacement.more » « less
-
Nonlinear lattices and the nonlinear acoustics they support have a broad impact on shock and vibration mitigation, sound isolation, and acoustic logic devices. In this work, we experimentally study wave redirection, localization, and non-reciprocity in an asymmetric network of two nonlinear lattices with weak linear inter-lattice coupling. We report on the design, fabrication, and system identification of coupled lattices with essentially nonlinear next-neighbor intra-lattice coupling and on their unusual nonlinear acoustics. By weakly coupling the lattices and introducing structural disorder in one of them, we experimentally prove the realization of irreversible breather redirection between lattices governed by a macroscopic analog of the quantum Landau–Zener tunneling effect. In the experiments performed, the input energy is applied by impulse (broadband) excitation, and the resulting acoustical mechanism for wave redirection is in the form of propagating breathers, that is, localized oscillating wave packets formed by the synergy of nonlinearity and dispersion. Moreover, we study the non-reciprocal acoustics of the experimental lattice system by applying separate impulses at each of its four terminals and investigate the tunability with the energy of the resulting acoustic non-reciprocity by systematically varying the impulse intensity. The reported experimental results show that the weakly coupled, disordered, and nonlinear lattice system has wave tailoring properties that are tunable with energy. Altogether, the experimental results agree well with theoretical predictions reported in a companion work based on reduced-order numerical models and prove the efficacy of the system for applications, providing a path for applying these advanced concepts in future structures and devices.more » « less
An official website of the United States government

