skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sex-Linked Growth Disorder and Aberrant Pituitary Gene Expression in Nestin-Cre-Mediated Egr1 Conditional Knockout Mice
Genes that regulate hormone release are essential for maintaining metabolism and energy balance. Egr1 encodes a transcription factor that regulates hormone production and release, and a decreased in growth hormones has been reported in Egr1 knockout mice. A reduction in growth hormones has also been observed in Nestin-Cre mice, a model frequently used to study the nervous system. Currently, it is unknown how Egr1 loss or the Nestin-Cre driver disrupt pituitary gene expression. Here, we compared the growth curves and pituitary gene expression profiles of Nestin-Cre-mediated Egr1 conditional knockout (Egr1cKO) mice with those of their controls. Reduced body weight was observed in both the Nestin-Cre and Egr1cKO mice, and the loss of Egr1 had a slightly more severe impact on female mice than on male mice. RNA-seq data analyses revealed that the sex-related differences were amplified in the Nestin-Cre-mediated Egr1 conditional knockout mice. Additionally, in the male mice, the influence of Egr1cKO on pituitary gene expression may be overridden by the Nestin-Cre driver. Differentially expressed genes associated with the Nestin-Cre driver were significantly enriched for genes related to growth factor activity and binding. Altogether, our results demonstrate that Nestin-Cre and the loss of Egr1 in the neuronal cell lineage have distinct impacts on pituitary gene expression in a sex-specific manner.  more » « less
Award ID(s):
1922428
PAR ID:
10476243
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Biology
Volume:
12
Issue:
7
ISSN:
2079-7737
Page Range / eLocation ID:
966
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background KDM6A is a demethylase encoded by a gene with female-biased expression due to escape from X inactivation. Its main role is to facilitate gene expression through removal of the repressive H3K27me3 mark, with evidence of some additional histone demethylase-independent functions. KDM6A mutations have been implicated in congenital disorders such as Kabuki Syndrome, as well as in sex differences in cancer. Methods Kdm6a was knocked out using CRISPR/Cas9 gene editing in F1 male and female mouse embryonic stem cells (ES) derived from reciprocal crosses between C57BL6 x Mus castaneus . Diploid and allelic RNA-seq analyses were done to compare gene expression between wild-type and Kdm6a knockout (KO) clones. The effects of Kdm6a KO on sex-biased gene expression were investigated by comparing gene expression between male and female ES cells. Changes in H3K27me3 enrichment and chromatin accessibility at promoter regions of genes with expression changes were characterized by ChIP-seq and ATAC-seq followed by diploid and allelic analyses. Results We report that Kdm6a KO in male and female embryonic stem (ES) cells derived from F1 hybrid mice cause extensive gene dysregulation, disruption of sex biases, and specific parental allele effects. Among the dysregulated genes are candidate genes that may explain abnormal developmental features of Kabuki syndrome caused by KDM6A mutations in human. Strikingly, Kdm6a knockouts result in a decrease in sex-biased expression and in preferential downregulation of the maternal alleles of a number of genes. Most promoters of dysregulated genes show concordant epigenetic changes including gain of H3K27me3 and loss of chromatin accessibility, but there was less concordance when considering allelic changes. Conclusions Our study reveals new sex-related roles of KDM6A in the regulation of developmental genes, the maintenance of sex-biased gene expression, and the differential expression of parental alleles. 
    more » « less
  2. Steel, Karen P (Ed.)
    Age-related hearing loss (ARHL) is a common sensory impairment with complex underlying mechanisms. In our previous study, we performed a meta-analysis of genome-wide association studies (GWAS) in mice and identified a novel locus on chromosome 18 associated with ARHL specifically linked to a 32 kHz tone burst stimulus. Consequently, we investigated the role of Formin Homology 2 Domain Containing 3 (Fhod3), a newly discovered candidate gene for ARHL based on the GWAS results. We observed Fhod3 expression in auditory hair cells (HCs) primarily localized at the cuticular plate (CP). To understand the functional implications of Fhod3 in the cochlea, we generated Fhod3 overexpression mice (Pax2-Cre+/-; Fhod3Tg/+) (TG) and HC-specific conditional knockout mice (Atoh1-Cre+/-; Fhod3fl/fl) (KO). Audiological assessments in TG mice demonstrated progressive high-frequency hearing loss, characterized by predominant loss of outer hair cells, and a decreased phalloidin intensities of CP. Ultrastructural analysis revealed loss of the shortest row of stereocilia in the basal turn of the cochlea, and alterations in the cuticular plate surrounding stereocilia rootlets. Importantly, the hearing and HC phenotype in TG mice phenocopied that of the KO mice. These findings suggest that balanced expression of Fhod3 is critical for proper CP and stereocilia structure and function. Further investigation of Fhod3 related hearing impairment mechanisms may lend new insight towards the myriad mechanisms underlying ARHL, which in turn could facilitate the development of therapeutic strategies for ARHL. 
    more » « less
  3. Synopsis Sexual size dimorphism is widespread in nature and often develops through sexual divergence in growth trajectories. In vertebrates, the growth hormone/insulin-like growth factor (GH/IGF) network is an important regulator of growth, and components of this network are often regulated in sex-specific fashion during the development of sexual size dimorphism. However, expression of the GH/IGF network is not well characterized outside of mammalian model systems, and the extent to which species differences in sexual size dimorphism are related to differences in GH/IGF network expression is unclear. To begin bridging this gap, we compared GH/IGF network expression in liver and muscle from 2 lizard congeners, one with extreme male-biased sexual size dimorphism (brown anole, Anolis sagrei), and one that is sexually monomorphic in size (slender anole, A. apletophallus). Specifically, we tested whether GH/IGF network expression in adult slender anoles resembles the highly sex-biased expression observed in adult brown anoles or the relatively unbiased expression observed in juvenile brown anoles. We found that adults of the 2 species differed significantly in the strength of sex-biased expression for several key upstream genes in the GH/IGF network, including insulin-like growth factors 1 and 2. However, species differences in sex-biased expression were minor when comparing adult slender anoles to juvenile brown anoles. Moreover, the multivariate expression of the entire GH/IGF network (as represented by the first two principal components describing network expression) was sex-biased for the liver and muscle of adult brown anoles, but not for either tissue in juvenile brown anoles or adult slender anoles. Our work suggests that species differences in sex-biased expression of genes in the GH/IGF network (particularly in the liver) may contribute to the evolution of species differences in sexual size dimorphism. 
    more » « less
  4. Abstract Phenotypic sexual dimorphism often involves the hormonal regulation of sex-biased expression for underlying genes. However, it is generally unknown whether the evolution of hormonally mediated sexual dimorphism occurs through upstream changes in tissue sensitivity to hormone signals, downstream changes in responsiveness of target genes, or both. Here, we use comparative transcriptomics to explore these possibilities in 2 species of Sceloporus lizards exhibiting different patterns of sexual dichromatism. Sexually dimorphic S. undulatus develops blue and black ventral coloration in response to testosterone, while sexually monomorphic S. virgatus does not, despite exhibiting similar sex differences in circulating testosterone levels. We administered testosterone implants to juveniles of each species and used RNAseq to quantify gene expression in ventral skin. Transcriptome-wide responses to testosterone were stronger in S. undulatus than in S. virgatus, suggesting species differences in tissue sensitivity to this hormone signal. Species differences in the expression of genes for androgen metabolism and sex hormone-binding globulin were consistent with this idea, but expression of the androgen receptor gene was higher in S. virgatus, complicating this interpretation. Downstream of androgen signaling, we found clear species differences in hormonal responsiveness of genes related to melanin synthesis, which were upregulated by testosterone in S. undulatus, but not in S. virgatus. Collectively, our results indicate that hormonal regulation of melanin synthesis pathways contributes to the development of sexual dimorphism in S. undulatus, and that changes in the hormonal responsiveness of these genes in S. virgatus contribute to the evolutionary loss of ventral coloration. 
    more » « less
  5. Abstract BackgroundMorphologic sex differences between males and females typically emerge after the primordial germ cell migration and gonad formation, although sex is determined at fertilization based on chromosome composition. A key debated sexual difference is the embryonic developmental rate, within vitroproduced male embryos often developing faster. However, the molecular mechanisms driving early embryonic sex differences remain unclear. ResultsTo investigate the transcriptional sex difference during early development,in vitroproduced bovine blastocysts were collected and sexed by PCR. A significant male-biased development was observed in expanded blastocysts. Ultra-low input RNA-seq analysis identified 837 DEGs, with 231 upregulated and 606 downregulated in males. Functional enrichment analysis revealed male-biased DEGs were associated with metabolic regulation, whereas female-biased DEGs were related to female gonad development, sex differentiation, inflammatory pathways, and TGF-beta signaling. Comparing X chromosome and autosome expression ratio, we found that female-biased DEGs contributed to the higher X-linked gene dosage, a phenomenon not observed in male embryos. Moreover, we identified the sex-biased transcription factors and RNA-bind proteins, including pluripotent factors such asSOX21andPRDM14, and splicing factorsFMR1andHNRNPH2. Additionally, we revealed 1,555 significantly sex-biased differential alternative splicing (AS), predominantly skipped exons, mapped to 906 genes, with 59 overlapping with DEGs enriched in metabolic and autophagy pathways. By incorporating novel isoforms from long reads sequencing, we identified 1,151 sex-biased differentially expressed isoforms (DEIs) associated with 1,017 genes. Functional analysis showed that female-biased DEIs were involved in the negative regulation of transcriptional activity, while male-biased DEIs were related to energy metabolism. Furthermore, we identified sex-biased differential exon usage inDENND1B, DIS3L2, DOCK11, IL1RAPL2,andZRSR2Y,indicating their sex-specific regulation in early embryo development. ConclusionThis study provided a comprehensive analysis of transcriptome differences between male and female bovine blastocysts, integrating sex-biased gene expression, alternative splicing, and isoform dynamics. Our findings indicate that enriched metabolism processes in male embryos may contribute to the faster developmental pace, providing insights into sex-specific regulatory mechanisms during early embryogenesis. Plain English summaryMale and female early embryos develop at different speeds, with male embryos often developing faster than female embryos. However, the reasons behind these early differences remain unclear. In this study, we examined gene activity in bovine embryos to uncover the biological factors regulating these early sex differences. We collected in vitro-produced bovine blastocysts, examined their sex, and confirmed that male embryos develop faster. By analyzing global gene activity, including alternative splicing, which allows one gene to code for multiple RNA isoforms and proteins, we found distinct gene expression profiles between male and female embryos. Male embryos showed higher activity in genes related to metabolism and cellular functions, while female embryos had increased activity in genes associated with female-specific gonad development and gene expression regulation. We also examined differences in how genes on the X chromosome were expressed. Female embryos had higher X-linked gene expression, which may contribute to sex-specific developmental regulation. Additionally, we identified sex-specific transcription factors and RNA-binding proteins that regulate early embryo development, some of which are known to control pluripotency and gene splicing. Overall, our study provides new insights into how gene activity shapes early sex differences, suggesting that enhanced metabolism in male embryos may be a key driver of their faster developmental rate. HighlightsMale embryos develop faster due to increased gene expression in metabolism pathwaysFemale embryos exhibit higher X-linked gene expression, suggesting X-dosage compensation plays a role in early developmentSex-biased alternative splicing events contribute to embryonic metabolism, autophagy, and transcriptional regulation in embryosSex-biased isoform diversity contributes to distinct developmental regulation in male and female embryosKey pluripotency factors (SOX21, PRDM14) and splicing regulators (FMR1, HNRNPH2) drive sex-specific gene expression 
    more » « less