Glacierized coastal catchments of the Gulf of Alaska (GoA) are undergoing rapid hydrologic fluctuations in response to climate change. These catchments deliver dissolved and suspended inorganic and organic matter to nearshore marine environments, however, these glacierized coastal catchments are relatively understudied and little is known about total solute and particulate fluxes to the ocean. We present hydrologic, physical, and geochemical data collected during April–October 2019–2021 from 10 streams along gradients of glacial fed to non‐glacial (i.e., precipitation) fed, in one Southcentral and one Southeast Alaska region. Hydrologic data reveal that glaciers drive the seasonal runoff patterns. The ẟ18O signature and specific conductance show distinctive seasonal variations in stream water sources between the study regions apparently due to the large amounts of rain in Southeast Alaska. Total dissolved solids concentrations and yields were elevated in the Southcentral region, due to lithologic influence on dissolved loads, however, the hydroclimate is the primary driver of the timing of dissolved and suspended yields. We show the yields of dissolved organic carbon is higher and that the δ13CPOCis enriched in the Southeast streams illustrating contrasts in organic carbon export across the GoA. Finally, we illustrate how future yields of solutes and sediments to the GoA may change as watersheds evolve from glacial influenced to precipitation dominated. This integrated analysis provides insights into how watershed characteristics beyond glacier coverage control properties of freshwater inputs to the GoA and the importance of expanding study regions to multiple hydroclimate regimes.
This content will become publicly available on November 1, 2024
Biospheric particulate organic carbon (POCbio) burial and rock petrogenic particulate organic carbon (POCpetro) oxidation are opposing long‐term controls on the global carbon cycle, sequestering and releasing carbon, respectively. Here, we examine how watershed glacierization impacts the POC source by assessing the concentration and isotopic composition (δ13C and Δ14C) of POC exported from four watersheds with 0%–49% glacier coverage across a melt season in Southeast Alaska. We used two mixing models (age‐weight percent and dual carbon isotope) to calculate concentrations of POCbioand POCpetrowithin the bulk POC pool. The fraction POCpetrocontribution was highest in the heavily glacierized watershed (age‐weight percent: 0.39 ± 0.05; dual isotope: 0.42 (0.37–0.47)), demonstrating a glacial source of POCpetroto fjords. POCpetrowas mobilized via glacier melt and subglacial flow, while POCbiowas largely flushed from the non‐glacierized landscape by rain. Flow normalized POCbioconcentrations exceeded POCpetroconcentrations for all streams, but surprisingly were highest in the heavily glacierized watershed (mean: 0.70 mgL−1; range 0.16–1.41 mgL−1), suggesting that glacier rivers can contribute substantial POCbioto coastal waters. Further, the most heavily glacierized watershed had the highest sediment concentration (207 mgL−1; 7–708 mgL−1), and thus may facilitate long‐term POCbioprotection via sediment burial in glacier‐dominated fjords. Our results suggest that continuing glacial retreat will decrease POC concentrations and increase POCbio:POCpetroexported from currently glacierized watersheds. Glacier retreat may thus decrease carbon storage in marine sediments and provide a positive feedback mechanism to climate change that is sensitive to future changes in POCpetrooxidation.
more » « less- NSF-PAR ID:
- 10476286
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Global Biogeochemical Cycles
- Volume:
- 37
- Issue:
- 11
- ISSN:
- 0886-6236
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Spatiotemporal Drivers of Hydrochemical Variability in a Tropical Glacierized Watershed in the Andes
Abstract There is a critical knowledge gap about how glacier retreat in remote and rapidly warming tropical montane watersheds will impact solute export, which has implications for downstream geochemical cycling and ecological function. Because tropical glacierized watersheds are often uniquely characterized by year‐round ablation, upslope vegetation migration, and significant groundwater flow, baseline understanding is needed of how spatiotemporal variables within these watersheds control outlet hydrochemistry. We implemented a recently developed reactive transport watershed model, BioRT‐Flux‐PIHM, for a sub‐humid glacierized watershed in the Ecuadorian Andes with young volcanic soils and fractured bedrock. We found a unique simulated concentration and discharge (C‐Q) pattern that was mostly chemostatic but superimposed by dilution episodes. The chemostatic background was attributed to large simulated contributions of groundwater (subsurface lateral flow) to streamflow, of which a notable fraction (37%) comprised infiltrated ice‐melt. Relatively constant concentrations were further maintained in the model because times and locations of lower mineral surface wetting and dissolution were offset by concentrating effects of greater evapotranspiration. Ice‐melt did not all infiltrate in simulations, especially during large precipitation events, when high surface runoff contributions to discharge triggered dilution episodes. In a model scenario without ice‐melt, major ion concentrations, including Na+, Ca2+, and Mg2+, became more strongly chemostatic and higher, but weathering rates decreased, attenuating export by 23%. We expect this reduction to be exacerbated by higher evapotranspiration and drier conditions with expanded vegetation. This work brings to light the importance of subsurface meltwater flow, ecohydrological variability, and interactions between melt and precipitation for controlling hydrochemical processes in tropical watersheds with rapidly retreating glaciers.
-
Abstract Climate change is decreasing watershed glacial coverage throughout Alaska, impacting the biogeochemistry of downstream ecosystems. We collected streamwater fortnightly over the glacial runoff period from three streams of varying watershed glacier coverage (0–49%) and a subglacial outflow to assess how glacier recession impacts the relative contributions of glacier and terrestrial plant derived dissolved organic matter (DOM) inputs to streams. We show an increase in the fraction of old dissolved organic carbon (up to ∼ 3200 yr old radiocarbon age) with increasing glacial meltwater contribution to streamflow. We use a dual isotopic mixing model (δ13C and Δ14C) to quantify the relative contribution of terrestrial and glacial sources to streamwater DOM. The endmember contributions were further compared to DOM molecular compositional data from Fourier‐transform ion cyclotron resonance mass spectrometry to assess whether DOM composition can be linked to streamwater DOM source in watersheds with varying contributions of glacial runoff. This approach revealed the glacial fraction was positively correlated with percent relative abundance of heteroatom‐containing DOM molecular formulae, aliphatics, and peptide‐like formulae, while the terrestrial fraction was positively correlated with condensed aromatics and polyphenolics. These results provide information about how the retreat of mountain glaciers will impact the composition and thus biogeochemical role of DOM delivered to downstream ecosystems. Our findings highlight that combining an isotopic mixing model and ultrahigh resolution mass spectrometry data can provide novel insights into how changes in watershed landcover impact the source and chemical properties of streamwater DOM.
-
Abstract Lateral transport of organic carbon (OC) to the coastal ocean is an important component of the global carbon cycle because rivers transport, mineralize, and bury significant amounts of OC. Glaciers drive water and sediment export from many high‐elevation and high‐latitude ecosystems, yet their role in watershed OC balances is poorly understood, particularly with regard to particulate OC. Here, we evaluate seasonal water, sediment, and comprehensive OC budgets, including both dissolved and particulate forms, for three watersheds in southeast Alaska that vary in glacier coverage. We show that glacier loss will shift the dominant size fraction of riverine OC from particulate toward dissolved and potentially alter the provenance of particulate OC. Glacier coverage also controls whether OC export is source (C stock) or transport (runoff) limited at the watershed scale. These findings provide insight into the future trajectory of riverine OC export in glacierized regions.
-
Abstract Glacial runoff exports large amounts of carbon (C) to the oceans, but major uncertainty remains regarding sources, seasonality, and magnitude. We apportioned C exported by five rivers from glacial and periglacial sources in northwest Greenland by monitoring discharge, water sources (δ18O), concentration and composition of dissolved organic carbon (DOC), and ages (14C) of DOC and particulate organic C over three summers (2010–2012). We found that particulate organic C (
F = 1.0366–0.2506) was generally older than DOC in glacial sourced rivers and likely sourced from the physical erosion of aged C pools. Most exported DOC showed strong seasonal variations in sources and discharge. In summer, mean DOC ages ranged from modern to 4,750 cal years BP (F = 1.0022–0.6291); however, the annual C flux from glacially sourced rivers was dominated by young, plant‐derived DOC (F = 0.9667–1.002) exported during the spring freshet. The most aged DOC (F = 0.6891–0.8297) was exported in middle to late summer at lower concentrations and was glacial in origin. Scaled to the whole of Greenland using model‐estimated runoff, we estimate a total riverine DOC flux of 0.29% to 0.45% ± 20% Tg C/year. Our flux results indicate that the highest C fluxes occur during the time of year when the majority of C is modern in age. However, higher melt rates from the Greenland ice sheet and longer growing seasons could result in increasing amounts of ancient C from the Greenland ice sheet and from the periglacial landscape to the ocean.