skip to main content


This content will become publicly available on November 8, 2024

Title: The Variation of Ionospheric O + and H + Outflow on Storm Timescales
Abstract

Geomagnetic storms are primarily driven by stream interaction regions (SIRs) and coronal mass ejections (CMEs). Since SIR and CME storms have different solar wind and magnetic field characteristics, the magnetospheric response may vary accordingly. Using FAST/TEAMS data, we investigate the variation of ionospheric O+and H+outflow as a function of geomagnetic storm phase during SIR and CME magnetic storms. The effects of storm size and solar EUV flux, including solar cycle and seasonal effects, on storm time ionospheric outflow, are also investigated. The results show that for both CME and SIR storms, the O+and H+fluences peak during the main phase, and then declines in the recovery phase. However, for CME storms, there is also significant increase during the initial phase. Because the outflow starts during the initial phase in CME storms, there is time for the O+to reach the plasma sheet before the start of the main phase. Since plasma is convected into the ring current from the plasma sheet during the main phase, this may explain why more O+is observed in the ring current during CME storms than during SIR storms. We also find that outflow fluence is higher for intense storms than moderate storms and is higher during solar maximum than solar minimum.

 
more » « less
NSF-PAR ID:
10476310
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
128
Issue:
11
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We report on the solar and interplanetary (IP) causes of the third largest geomagnetic storm (26 August 2018) in solar cycle 24. The underlying coronal mass ejection (CME) originating from a quiescent filament region becomes a 440 km/s magnetic cloud (MC) at 1 au after ∼5 days. The prolonged CME acceleration (for ∼24 hr) coincides with the time profiles of the post‐eruption arcade intensity and reconnected flux. Chen et al. (2019,https://doi.org/10.3847/1538-4357/ab3f36) obtain a lower speed since they assumed that the CME does not accelerate after ∼12 hr. The presence of multiple coronal holes near the filament channel and the high‐speed wind from them seem to have the combined effect of producing complex rotation in the corona and IP medium resulting in a high‐inclination MC. The Dst time profile in the main phase steepens significantly (rapid increase in storm intensity) coincident with the density increase (prominence material) in the second half of the MC. Simulations using the Comprehensive Inner Magnetosphere‐Ionosphere model show that a higher ring current energy results from larger dynamic pressure (density) in MCs. Furthermore, the Dst index is highly correlated with the main‐phase time integral of the ring current injection that includes density, consistent with the simulations. A complex temporal structure develops in the storm main phase if the underlying MC has a complex density structure during intervals of southward IP magnetic field. We conclude that the high intensity of the storm results from the prolonged CME acceleration, complex rotation of the CME flux rope, and the high density in the 1‐au MC.

     
    more » « less
  2. Abstract

    The occurrence of St. Patrick's Day (17 March) geomagnetic storms during two different years (2013 and 2015) with similar solar flux levels but varying storm intensity provided an opportunity to compare and contrast the responses of the ionosphere‐thermosphere (IT) system to different levels of geomagnetic activity. The evolution of positive ionospheric storms at the southern polar stations Bharati (76.6°S MLAT) and Davis (76.2°S MLAT) and its causative connection to the solar wind driving mechanisms during these storms has been investigated in this paper. During the main phase of both the storms, significant enhancements in TEC and phase scintillation were observed in the magnetic noon/ midnight period at Bharati and Davis. The TEC in the midnight sector on 17 March 2015 was significantly higher compared to that on 17 March 2013, in line with the storm intensity. The TEC enhancements during both the storm events are associated with the formation of the storm‐enhanced densities (SEDs)/tongue of ionization (TOI). The strong and sustained magnetopause erosion led to the prevalence of stronger storm time electric fields (prompt penetration electric field (PPEF)/subauroral polarization streams (SAPS)) for long duration on 17 March 2015. This combined with the action of neutral winds at midlatitudes favored the formation of higher plasma densities in the regions of SED formation on this day. The same was weaker during the 17 March 2013 storm due to the fast fluctuating nature of interplanetary magnetic field (IMF)Bz. This study shows that the duration and extent of magnetopause erosion play an important role in the spatiotemporal evolution of the plasma density distribution in the high‐midlatitude ionosphere.

     
    more » « less
  3. Abstract

    The total energy transfer from the solar wind to the magnetosphere is governed by the reconnection rate at the magnetosphere edges as the Z‐component of interplanetary magnetic field (IMFBz) turns southward. The geomagnetic storm on 21–22 January 2005 is considered to be anomalous as the SYM‐H index that signifies the strength of ring current, decreases and had a sustained trough value of −101 nT lasting more than 6 hr under northward IMFBzconditions. In this work, the standard WINDMI model is utilized to estimate the growth and decay of magnetospheric currents by using several solar wind‐magnetosphere coupling functions. However, it is found that the WINDMI model driven by any of these coupling functions is not fully able to explain the decrease of SYM‐H under northward IMFBz. A dense plasma sheet along with signatures of a highly stretched magnetosphere was observed during this storm. The SYM‐H variations during the entire duration of the storm were only reproduced after modifying the WINDMI model to account for the effects of the dense plasma sheet. The limitations of directly driven models relying purely on the solar wind parameters and not accounting for the state of the magnetosphere are highlighted by this work.

     
    more » « less
  4. Abstract

    We have used measurements of the Defense Meteorological Satellite Program (DMSP) satellites to study variations of electron temperature in the subauroral ionosphere during the magnetic storm on 17–25 March 2015. This magnetic storm had a long recovery phase of 7 days, and the ionospheric behavior over the entire storm time was seldom investigated. In this study, we find that the electron temperature at subauroral latitudes was continuously enhanced for 8 days, from the storm onset to the end of the recovery phase. The maximum electron temperature during the storm times was 1000–4000 K higher than the maximum electron temperature during quiet times. This long‐lasting enhancement of subauroral electron temperature was attributed to energy transfer among the solar wind, magnetosphere, ring current, plasmasphere, and ionosphere driven by high‐speed solar wind streams and fluctuating interplanetary magnetic field during the entire 8‐day period of the storm. The electron temperature enhancements were quite symmetric in the post‐midnight sector but became strongly asymmetric near dawn between the southern and northern hemispheres. The asymmetric enhancements of electron temperature near dawn may be related to the magnetic declination and the daytime midlatitude trough in the southern hemisphere. Large daily variations of maximum electron temperature in the post‐midnight sector were observed and may be related to the offset between geomagnetic and geographic latitudes. These DMSP observations provide new insight on ionospheric response to intense magnetic storms.

     
    more » « less
  5. Abstract

    During geomagnetic storms and substorms, the magnetosphere and ionosphere are strongly coupled by precipitating magnetospheric electrons from the Earth's plasma sheet and driven by both magnetospheric and ionospheric processes. Magnetospheric wave activity initiates electron precipitation, and the ionosphere and upper atmosphere further facilitate this process by enhancing the value of precipitated energy fluxes via connection of two magnetically conjugate regions and multiple atmospheric reflections. This paper focuses on the resulting electron energy fluxes and affiliated height‐integrated Pedersen and Hall conductances in the auroral regions produced by multiple atmospheric reflections during the 17 March 2013 geomagnetic storm and their effects on the inner magnetospheric electric field and ring current. Our study is based on the magnetically and electrically self‐consistent Rice Convection Model‐Equilibrium of the inner magnetosphere with SuperThermal Electron Transport modified electron energy fluxes that take into account the electron energy interplay between the two magnetically conjugate ionospheres. SuperThermal Electron Transport‐modified energy flux in the Rice Convection Model‐Equilibrium leads to a significant difference in the global conductance pattern, ionospheric electric field formation, Birkeland current structure, ring current energization and its energy content, subauroral polarization drifts intensifications and their spatial locations, interchange instability redistribution, and overall energy interplay on the global scale.

     
    more » « less