skip to main content


Title: A cloudy forecast for species distribution models: Predictive uncertainties abound for California birds after a century of climate and land‐use change
Abstract

Correlative species distribution models are widely used to quantify past shifts in ranges or communities, and to predict future outcomes under ongoing global change. Practitioners confront a wide range of potentially plausible models for ecological dynamics, but most specific applications only consider a narrow set. Here, we clarify that certain model structures can embed restrictive assumptions about key sources of forecast uncertainty into an analysis. To evaluate forecast uncertainties and our ability to explain community change, we fit and compared 39 candidate multi‐ or joint species occupancy models to avian incidence data collected at 320 sites across California during the early 20th century and resurveyed a century later. We found massive (>20,000 LOOIC) differences in within‐time information criterion across models. Poorer fitting models omitting multivariate random effects predicted less variation in species richness changes and smaller contemporary communities, with considerable variation in predicted spatial patterns in richness changes across models. The top models suggested avian environmental associations changed across time, contemporary avian occupancy was influenced by previous site‐specific occupancy states, and that both latent site variables and species associations with these variables also varied over time. Collectively, our results recapitulate that simplified model assumptions not only impact predictive fit but may mask important sources of forecast uncertainty and mischaracterize the current state of system understanding when seeking to describe or project community responses to global change. We recommend that researchers seeking to make long‐term forecasts prioritize characterizing forecast uncertainty over seeking to present a single best guess. To do so reliably, we urge practitioners to employ models capable of characterizing the key sources of forecast uncertainty, where predictors, parameters and random effects may vary over time or further interact with previous occurrence states.

 
more » « less
NSF-PAR ID:
10476314
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
30
Issue:
1
ISSN:
1354-1013
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Compared to non‐urban environments, cities host ecological communities with altered taxonomic diversity and functional trait composition. However, we know little about how these urban changes take shape over time. Using historical bee (Apoidea: Anthophila) museum specimens supplemented with online repositories and researcher collections, we investigated whether bee species richness tracked urban and human population growth over the past 118 years. We also determined which species were no longer collected, whether those species shared certain traits, and if collector behavior changed over time. We focused on Wake County, North Carolina, United States where human population size has increased over 16 times over the last century along with the urban area within its largest city, Raleigh, which has increased over four times. We estimated bee species richness with occupancy models, and rarefaction and extrapolation curves to account for imperfect detection and sample coverage. To determine if bee traits correlated with when species were collected, we compiled information on native status, nesting habits, diet breadth, and sociality. We used non‐metric multidimensional scaling to determine if individual collectors contributed different bee assemblages over time. In total, there were 328 species collected in Wake County. We found that although bee species richness varied, there was no clear trend in bee species richness over time. However, recent collections (since 2003) were missing 195 species, and there was a shift in trait composition, particularly lost species were below‐ground nesters. The top collectors in the dataset differed in how often they collected bee species, but this was not consistent between historic and contemporary time periods; some contemporary collectors grouped closer together than others, potentially due to focusing on urban habitats. Use of historical collections and complimentary analyses can fill knowledge gaps to help understand temporal patterns of species richness in taxonomic groups that may not have planned long‐term data.

     
    more » « less
  2. Abstract

    As the quality and quantity of natural habitats decrease, pressure increases to better understand species–habitat interactions and how animal communities respond to habitat changes. We assessed the relative importance of local habitat heterogeneity and productivity measures as predictors of avian species richness and compared these results to models for species of conservation concern (SCC). We derived three‐dimensional habitat heterogeneity and productivity measures from light detection and ranging data and hyperspectral imagery, and then used a Bayesian multi‐species hierarchical framework to model avian species richness and occupancy. We found both habitat heterogeneity and productivity were important factors for determining avian community richness. Three‐dimensional habitat heterogeneity and productivity metrics accurately predicted species richness at a local scale and were especially important to use within habitat guilds (i.e., alpha diversity). When scaling up to community richness across multiple habitat types (i.e., gamma diversity), two‐dimensional (surface level) productivity and heterogeneity metrics became important additions to the three‐dimensional metrics when estimating total avian richness. We also tested the utility of these metrics for predicting occupancy of SCC and compared community‐level relationships to species‐specific relationships. Species of conservation concern differed from the broader avian community with regard to local habitat heterogeneity and productivity measures. Species of conservation concern had different relationship habitat metrics than the greater avian community. Three‐dimensional measures of habitat heterogeneity and productivity predicted avian richness across the landscape, yet also highlighted the different habitat structure needs of SCC compared with the greater avian community.

     
    more » « less
  3. Abstract

    Climate and land‐use changes are thought to be the greatest threats to biodiversity, but few studies have directly measured their simultaneous impacts on species distributions. We used a unique historic resource—early 20th‐century bird surveys conducted by Joseph Grinnell and colleagues—paired with contemporary resurveys a century later to examine changes in bird distributions in California's Central Valley, one of the most intensively modified agricultural zones in the world and a region of heterogeneous climate change. We analyzed species‐ and community‐level occupancy using multispecies occupancy models that explicitly accounted for imperfect detection probability, and developed a novel, simulation‐based method to compare the relative influences of climate and land‐use covariates on site‐level species richness and beta diversity (measured by Jaccard similarity). Surprisingly, we show that mean occupancy, species richness and between‐site similarity have remained remarkably stable over the past century. Stability in community‐level metrics masked substantial changes in species composition; occupancy declines of some species were equally matched by increases in others, predominantly species with generalist or human‐associated habitat preferences. Bird occupancy, richness and diversity within each era were driven most strongly by water availability (precipitation and percent water cover), indicating that both climate and land‐use are important drivers of species distributions. Water availability had much stronger effects than temperature, urbanization and agricultural cover, which are typically thought to drive biodiversity decline.

     
    more » « less
  4. Abstract

    Understanding how abiotic disturbance and biotic interactions determine pollinator and flowering‐plant diversity is critically important given global climate change and widespread pollinator declines. To predict responses of pollinators and flowering‐plant communities to changes in wildfire disturbance, a mechanistic understanding of how these two trophic levels respond to wildfire severity is needed.

    We compared site‐to‐site variation in community composition (β‐diversity), species richness and abundances of pollinators and flowering plants among landscapes with no recent wildfire (unburned), mixed‐severity wildfire and high‐severity wildfire in three sites across the Northern Rockies Ecoregion, USA. We used variation partitioning to assess the relative contributions of wildfire, other abiotic variables (climate, soils and topography) and biotic associations among plant and pollinator composition to community assembly of both trophic levels.

    Wildfire disturbance generally increased species richness and total abundance, but decreasedβ‐diversity, of both pollinators and flowering plants. However, reductions inβ‐diversity from wildfire appeared to result from increased abundances following fires, resulting in higher local species richness of pollinators and flowers in burned than unburned landscapes. After accounting for differences in abundance, standardized effect sizes ofβ‐diversity were higher in burned than unburned landscapes, suggesting that wildfire enhances non‐random assortment of pollinator and flowering‐plant species among local communities.

    Wildfire disturbance mediated the relative importance of mutualistic associations toβ‐diversity of pollinators and flowering plants. The influence of pollinatorβ‐diversity on flowering‐plantβ‐diversity increased with wildfire severity, whereas the influence of flowering‐plantβ‐diversity on pollinatorβ‐diversity was greater in mixed‐severity than high‐severity wildfire or unburned landscapes. Moreover, biotic associations among pollinator and plant species explained substantial variation inβ‐diversity of both trophic levels beyond what could be explained by wildfire and all other abiotic and spatial factors combined.

    Synthesis. Wildfire disturbance and plant–pollinator interactions both strongly influenced the assembly of pollinator and flowering‐plant communities at local and regional scales. However, biotic interactions were generally more important drivers of community assembly in disturbed than undisturbed landscapes. As wildfire regimes continue to change globally, predicting its effects on biodiversity will require a deeper understanding of the ecological processes that mediate biotic interactions among linked trophic levels.

     
    more » « less
  5. Abstract

    Global tropical forests have been modified and fragmented by commodity agroforests, leading to significant alterations in ecological communities. Nevertheless, these production landscapes offer secondary habitats that support and sustain local biodiversity. In this study, we assess community level and species‐specific responses of amphibians to land management in areca, coffee and rubber, three of the largest commodity agroforests in the Western Ghats.

    A total of 106 agroforests across a 30,000‐km2landscape were surveyed for amphibians using a combination of visual and auditory encounter surveys. We used a Bayesian multi‐species occupancy modelling framework to examine patterns of species richness, beta diversity, dominance structure and individual species occupancies. The influence of biogeographic variables such as elevation and latitude as well as microhabitat availability of streams, ponds and unpaved plantation roads was tested on amphibian species occupancy.

    Coffee agroforests had the highest species richness and lowest dominance when compared to areca and rubber. Beta diversity was highest in areca for within agroforest measures. Compared across agroforests, coffee had highest beta diversity with areca and rubber. Both elevation and latitude showed an overall positive association with amphibian occupancy, although species‐specific responses varied considerably.

    Microhabitat availability was one of the strongest predictors of amphibian occupancy, with mean community response being positive with presence of water bodies and roads. Pond presence increased species richness per site by 34.7% (species‐specific responses in occupancy ranged from –2.7% to 327%). Stream presence alone did not change species richness but species‐specific response ranged from –59% to 273%. Presence of plantation roads also increased species richness by 21.5% (species‐specific response ranged from –82% to 656%). Being unpaved with little vehicular traffic, plantation roads seem to provide additional habitats for amphibians. Presence of all three microhabitats at a site increased species richness by 75%.

    Our study highlights the importance of land management strategies that maintain diverse native canopy and freshwater bodies and other microhabitats in sustaining amphibian fauna. Market‐driven land‐use change from coffee to other agroforest types will have detrimental effects on amphibian communities and their long‐term sustainability in the Western Ghats.

     
    more » « less