skip to main content


Title: Inaccurate fossil placement does not compromise tip‐dated divergence times
Abstract

Time‐scaled phylogenies underpin the interrogation of evolutionary processes across deep timescales, as well as attempts to link these to Earth's history. By inferring the placement of fossils and using their ages as temporal constraints, tip dating under the fossilized birth–death (FBD) process provides a coherent prior on divergence times. At the same time, it also links topological and temporal accuracy, as incorrectly placed fossil terminals should misinform divergence times. This could pose serious issues for obtaining accurate node ages, yet the interaction between topological and temporal error has not been thoroughly explored. We simulate phylogenies and associated morphological datasets using methodologies that incorporate evolution under selection, and are benchmarked against empirical datasets. We find that datasets of 300 characters and realistic levels of missing data generally succeed in inferring the correct placement of fossils on a constrained extant backbone topology, and that true node ages are usually contained within Bayesian posterior distributions. While increased fossil sampling improves the accuracy of inferred ages, topological and temporal errors do not seem to be linked: analyses in which fossils resolve less accurately do not exhibit elevated errors in node age estimates. At the same time, inferred divergence times are biased, probably due to a mismatch between the FBD prior and the shape of our simulated trees. While these results are encouraging, suggesting that even fossils with uncertain affinities can provide useful temporal information, they also emphasize that palaeontological information cannot overturn discrepancies between model priors and the true diversification history.

 
more » « less
Award ID(s):
2036186
NSF-PAR ID:
10476320
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Palaeontology
Volume:
66
Issue:
6
ISSN:
0031-0239
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The fossilized birth–death (FBD) process provides an ideal model for inferring phylogenies from both extant and fossil taxa. Using this approach, fossils are directly integrated into the tree, leading to a statistically coherent prior on divergence times. Since fossils are typically not associated with molecular sequences, additional information is required to place fossils in the tree. We use simulations to evaluate two different approaches to handling fossil placement in FBD analyses: using topological constraints, where the user specifies monophyletic clades based on established taxonomy, or using total‐evidence analyses, which use a morphological data matrix in addition to the molecular alignment. We also explore how rate variation in fossil recovery or diversification rates impacts these approaches. We find that the extant topology is well recovered under all methods of fossil placement. Divergence times are similarly well recovered across all methods, with the exception of constraints which contain errors. We see similar patterns in datasets which include rate variation, however, relative errors in extant divergence times increase when more variation is included in the dataset, for all approaches using topological constraints, and particularly for constraints with errors. Finally, we show that trees recovered under the FBD model are more accurate than those estimated using non‐time calibrated inference. Overall, we show that both fossil placement approaches are reliable even when including uncertainty. Our results underscore the importance of core taxonomic research, including morphological data collection and species descriptions, irrespective of the approach to handling phylogenetic uncertainty using the FBD process.

     
    more » « less
  2. Folk, Ryan (Ed.)
    Abstract Phylogenetic divergence-time estimation has been revolutionized by two recent developments: 1) total-evidence dating (or "tip-dating") approaches that allow for the incorporation of fossils as tips in the analysis, with their phylogenetic and temporal relationships to the extant taxa inferred from the data and 2) the fossilized birth-death (FBD) class of tree models that capture the processes that produce the tree (speciation, extinction, and fossilization) and thus provide a coherent and biologically interpretable tree prior. To explore the behavior of these methods, we apply them to marattialean ferns, a group that was dominant in Carboniferous landscapes prior to declining to its modest extant diversity of slightly over 100 species. We show that tree models have a dramatic influence on estimates of both divergence times and topological relationships. This influence is driven by the strong, counter-intuitive informativeness of the uniform tree prior, and the inherent nonidentifiability of divergence-time models. In contrast to the strong influence of the tree models, we find minor effects of differing the morphological transition model or the morphological clock model. We compare the performance of a large pool of candidate models using a combination of posterior-predictive simulation and Bayes factors. Notably, an FBD model with epoch-specific speciation and extinction rates was strongly favored by Bayes factors. Our best-fitting model infers stem and crown divergences for the Marattiales in the mid-Devonian and Late Cretaceous, respectively, with elevated speciation rates in the Mississippian and elevated extinction rates in the Cisuralian leading to a peak diversity of ${\sim}$2800 species at the end of the Carboniferous, representing the heyday of the Psaroniaceae. This peak is followed by the rapid decline and ultimate extinction of the Psaroniaceae, with their descendants, the Marattiaceae, persisting at approximately stable levels of diversity until the present. This general diversification pattern appears to be insensitive to potential biases in the fossil record; despite the preponderance of available fossils being from Pennsylvanian coal balls, incorporating fossilization-rate variation does not improve model fit. In addition, by incorporating temporal data directly within the model and allowing for the inference of the phylogenetic position of the fossils, our study makes the surprising inference that the clade of extant Marattiales is relatively young, younger than any of the fossils historically thought to be congeneric with extant species. This result is a dramatic demonstration of the dangers of node-based approaches to divergence-time estimation, where the assignment of fossils to particular clades is made a priori (earlier node-based studies that constrained the minimum ages of extant genera based on these fossils resulted in much older age estimates than in our study) and of the utility of explicit models of morphological evolution and lineage diversification. [Bayesian model comparison; Carboniferous; divergence-time estimation; fossil record; fossilized birth–death; lineage diversification; Marattiales; models of morphological evolution; Psaronius; RevBayes.] 
    more » « less
  3. Ryan Folk (Ed.)
    Phylogenetic divergence-time estimation has been revolutionized by two recent developments: 1) total-evidence dating (or "tip-dating") approaches that allow for the incorporation of fossils as tips in the analysis, with their phylogenetic and temporal relationships to the extant taxa inferred from the data and 2) the fossilized birth-death (FBD) class of tree models that capture the processes that produce the tree (speciation, extinction, and fossilization) and thus provide a coherent and biologically interpretable tree prior. To explore the behavior of these methods, we apply them to marattialean ferns, a group that was dominant in Carboniferous landscapes prior to declining to its modest extant diversity of slightly over 100 species. We show that tree models have a dramatic influence on estimates of both divergence times and topological relationships. This influence is driven by the strong, counter-intuitive informativeness of the uniform tree prior, and the inherent nonidentifiability of divergence-time models. In contrast to the strong influence of the tree models, we find minor effects of differing the morphological transition model or the morphological clock model. We compare the performance of a large pool of candidate models using a combination of posterior-predictive simulation and Bayes factors. Notably, an FBD model with epoch-specific speciation and extinction rates was strongly favored by Bayes factors. Our best-fitting model infers stem and crown divergences for the Marattiales in the mid-Devonian and Late Cretaceous, respectively, with elevated speciation rates in the Mississippian and elevated extinction rates in the Cisuralian leading to a peak diversity of ∼2800 species at the end of the Carboniferous, representing the heyday of the Psaroniaceae. This peak is followed by the rapid decline and ultimate extinction of the Psaroniaceae, with their descendants, the Marattiaceae, persisting at approximately stable levels of diversity until the present. This general diversification pattern appears to be insensitive to potential biases in the fossil record; despite the preponderance of available fossils being from Pennsylvanian coal balls, incorporating fossilization-rate variation does not improve model fit. In addition, by incorporating temporal data directly within the model and allowing for the inference of the phylogenetic position of the fossils, our study makes the surprising inference that the clade of extant Marattiales is relatively young, younger than any of the fossils historically thought to be congeneric with extant species. This result is a dramatic demonstration of the dangers of node-based approaches to divergence-time estimation, where the assignment of fossils to particular clades is made a priori (earlier node-based studies that constrained the minimum ages of extant genera based on these fossils resulted in much older age estimates than in our study) and of the utility of explicit models of morphological evolution and lineage diversification. [Bayesian model comparison; Carboniferous; divergence-time estimation; fossil record; fossilized birth–death; lineage diversification; Marattiales; models of morphological evolution; Psaronius; RevBayes.] 
    more » « less
  4. Paleontological and neontological systematics seek to answer evolutionary questions with different datasets. Phylogenies inferred for combined extant and extinct taxa provide novel insights into the evolutionary history of life. Primates have an extensive, diverse fossil record and molecular data for living and extinct taxa are rapidly becoming available. We used two models to infer the phylogeny and divergence times for living and fossil primates, the tip-dating (TD) and fossilized birth-death process (FBD). We collected new morphological data, especially on the living and extinct endemic lemurs of Madagascar. We combined the morphological data with published DNA sequences to infer near-complete (88% of lemurs) time-calibrated phylogenies. The results suggest that primates originated around the Cretaceous-Tertiary boundary, slightly earlier than indicated by the fossil record and later than previously inferred from molecular data alone. We infer novel relationships among extinct lemurs, and strong support for relationships that were previously unresolved. Dates inferred with TD were significantly older than those inferred with FBD, most likely related to an assumption of a uniform branching process in the TD compared to a birth-death process assumed in the FBD. This is the first study to combine morphological and DNA sequence data from extinct and extant primates to infer evolutionary relationships and divergence times, and our results shed new light on the tempo of lemur evolution and the efficacy of combined phylogenetic analyses. 
    more » « less
  5. null (Ed.)
    Abstract Motivation Precise time calibrations needed to estimate ages of species divergence are not always available due to fossil records' incompleteness. Consequently, clock calibrations available for Bayesian dating analyses can be few and diffused, i.e. phylogenies are calibration-poor, impeding reliable inference of the timetree of life. We examined the role of speciation birth–death (BD) tree prior on Bayesian node age estimates in calibration-poor phylogenies and tested the usefulness of an informative, data-driven tree prior to enhancing the accuracy and precision of estimated times. Results We present a simple method to estimate parameters of the BD tree prior from the molecular phylogeny for use in Bayesian dating analyses. The use of a data-driven birth–death (ddBD) tree prior leads to improvement in Bayesian node age estimates for calibration-poor phylogenies. We show that the ddBD tree prior, along with only a few well-constrained calibrations, can produce excellent node ages and credibility intervals, whereas the use of an uninformative, uniform (flat) tree prior may require more calibrations. Relaxed clock dating with ddBD tree prior also produced better results than a flat tree prior when using diffused node calibrations. We also suggest using ddBD tree priors to improve the detection of outliers and influential calibrations in cross-validation analyses. These results have practical applications because the ddBD tree prior reduces the number of well-constrained calibrations necessary to obtain reliable node age estimates. This would help address key impediments in building the grand timetree of life, revealing the process of speciation and elucidating the dynamics of biological diversification. Availability and implementation An R module for computing the ddBD tree prior, simulated datasets and empirical datasets are available at https://github.com/cathyqqtao/ddBD-tree-prior. 
    more » « less