skip to main content


Title: Ancient human dental calculus metadata collection and sampling strategies: Recommendations for best practices
Abstract Objectives

Ancient human dental calculus is a unique, nonrenewable biological resource encapsulating key information about the diets, lifestyles, and health conditions of past individuals and populations. With compounding calls its destructive analysis, it is imperative to refine the ways in which the scientific community documents, samples, and analyzes dental calculus so as to maximize its utility to the public and scientific community.

Materials and Methods

Our research team conducted an IRB‐approved survey of dental calculus researchers with diverse academic backgrounds, research foci, and analytical specializations.

Results

This survey reveals variation in how metadata is collected and utilized across different subdisciplines and highlights how these differences have profound implications for dental calculus research. Moreover, the survey suggests the need for more communication between those who excavate, curate, and analyze biomolecular data from dental calculus.

Discussion

Challenges in cross‐disciplinary communication limit researchers' ability to effectively utilize samples in rigorous and reproducible ways. Specifically, the lack of standardized skeletal and dental metadata recording and contamination avoidance procedures hinder downstream anthropological applications, as well as the pursuit of broader paleodemographic and paleoepidemiological inquiries that rely on more complete information about the individuals sampled. To provide a path forward toward more ethical and standardized dental calculus sampling and documentation approaches, we review the current methods by which skeletal and dental metadata are recorded. We also describe trends in sampling and contamination‐control approaches. Finally, we use that information to suggest new guidelines for ancient dental calculus documentation and sampling strategies that will improve research practices in the future.

 
more » « less
NSF-PAR ID:
10476334
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
American Journal of Biological Anthropology
ISSN:
2692-7691
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Objectives

    Dental calculus is among the richest known sources of ancient DNA in the archaeological record. Although most DNA within calculus is microbial, it has been shown to contain sufficient human DNA for the targeted retrieval of whole mitochondrial genomes. Here, we explore whether calculus is also a viable substrate for whole human genome recovery using targeted enrichment techniques.

    Materials and methods

    Total DNA extracted from 24 paired archaeological human dentin and calculus samples was subjected to whole human genome enrichment using in‐solution hybridization capture and high‐throughput sequencing.

    Results

    Total DNA from calculus exceeded that of dentin in all cases, and although the proportion of human DNA was generally lower in calculus, the absolute human DNA content of calculus and dentin was not significantly different. Whole genome enrichment resulted in up to four‐fold enrichment of the human endogenous DNA content for both dentin and dental calculus libraries, albeit with some loss in complexity. Recovering more on‐target reads for the same sequencing effort generally improved the quality of downstream analyses, such as sex and ancestry estimation. For nonhuman DNA, comparison of phylum‐level microbial community structure revealed few differences between precapture and postcapture libraries, indicating that off‐target sequences in human genome‐enriched calculus libraries may still be useful for oral microbiome reconstruction.

    Discussion

    While ancient human dental calculus does contain endogenous human DNA sequences, their relative proportion is low when compared with other skeletal tissues. Whole genome enrichment can help increase the proportion of recovered human reads, but in this instance enrichment efficiency was relatively low when compared with other forms of capture. We conclude that further optimization is necessary before the method can be routinely applied to archaeological samples.

     
    more » « less
  2. Abstract Objectives

    Limited studies have focused on how European contact and colonialism impacted Native American oral microbiomes, specifically, the diversity of commensal or opportunistically pathogenic oral microbes, which may be associated with oral diseases. Here, we studied the oral microbiomes of pre‐contact Wichita Ancestors, in partnership with the Descendant community, The Wichita and Affiliated Tribes, Oklahoma, USA.

    Materials and Methods

    Skeletal remains of 28 Wichita Ancestors from 20 archeological sites (dating approximately to 1250–1450 CE) were paleopathologically assessed for presence of dental calculus and oral disease. DNA was extracted from calculus, and partial uracil deglycosylase‐treated double‐stranded DNA libraries were shotgun‐sequenced using Illumina technology. DNA preservation was assessed, the microbial community was taxonomically profiled, and phylogenomic analyzes were conducted.

    Results

    Paleopathological analysis revealed signs of oral diseases such as caries and periodontitis. Calculus samples from 26 Ancestors yielded oral microbiomes with minimal extraneous contamination. Anaerolineaceae bacterium oral taxon 439 was found to be the most abundant bacterial species. Several Ancestors showed high abundance of bacteria typically associated with periodontitis such asTannerella forsythiaandTreponema denticola. Phylogenomic analyzes of Anaerolineaceae bacterium oral taxon 439 andT. forsythiarevealed biogeographic structuring; strains present in the Wichita Ancestors clustered with strains from other pre‐contact Native Americans and were distinct from European and/or post‐contact American strains.

    Discussion

    We present the largest oral metagenome dataset from a pre‐contact Native American population and demonstrate the presence of distinct lineages of oral microbes specific to the pre‐contact Americas.

     
    more » « less
  3. Abstract Motivation

    Environmental DNA (eDNA), as a rapidly expanding research field, stands to benefit from shared resources including sampling protocols, study designs, discovered sequences, and taxonomic assignments to sequences. High-quality community shareable eDNA resources rely heavily on comprehensive metadata documentation that captures the complex workflows covering field sampling, molecular biology lab work, and bioinformatic analyses. There are limited sources that provide documentation of database development on comprehensive metadata for eDNA and these workflows and no open-source software.

    Results

    We present medna-metadata, an open-source, modular system that aligns with Findable, Accessible, Interoperable, and Reusable guiding principles that support scholarly data reuse and the database and application development of a standardized metadata collection structure that encapsulates critical aspects of field data collection, wet lab processing, and bioinformatic analysis. Medna-metadata is showcased with metabarcoding data from the Gulf of Maine (Polinski et al., 2019).

    Availability and implementation

    The source code of the medna-metadata web application is hosted on GitHub (https://github.com/Maine-eDNA/medna-metadata). Medna-metadata is a docker-compose installable package. Documentation can be found at https://medna-metadata.readthedocs.io/en/latest/?badge=latest. The application is implemented in Python, PostgreSQL and PostGIS, RabbitMQ, and NGINX, with all major browsers supported. A demo can be found at https://demo.metadata.maine-edna.org/.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  4. Abstract

    Insects are the most ubiquitous and diverse group of eukaryotic organisms on Earth, forming a crucial link in terrestrial and freshwater food webs. They have recently become the subject of headlines because of observations of dramatic declines in some places. Although there are hundreds of long‐term insect monitoring programs, a global database for long‐term data on insect assemblages has so far remained unavailable. In order to facilitate synthetic analyses of insect abundance changes, we compiled a database of long‐term (≥10 yr) studies of assemblages of insects (many also including arachnids) in the terrestrial and freshwater realms. We searched the scientific literature and public repositories for data on insect and arachnid monitoring using standardized protocols over a time span of 10 yr or longer, with at least two sampling events. We focused on studies that presented or allowed calculation of total community abundance or biomass. We extracted data from tables, figures, and appendices, and, for data sets that provided raw data, we standardized trapping effort over space and time when necessary. For each site, we extracted provenance details (such as country, state, and continent) as well as information on protection status, land use, and climatic details from publicly available GIS sources. In all, the database contains 1,668 plot‐level time series sourced from 165 studies with samples collected between 1925 and 2018. Sixteen data sets provided here were previously unpublished. Studies were separated into those collected in the terrestrial realm (103 studies with a total of 1,053 plots) and those collected in the freshwater realm (62 studies with 615 plots). Most studies were from Europe (48%) and North America (29%), with 34% of the plots located in protected areas. The median monitoring time span was 19 yr, with 12 sampling years. The number of individuals was reported in 129 studies, the total biomass was reported in 13 studies, and both abundance and biomass were reported in 23 studies. This data set is published under a CC‐BY license, requiring attribution of the data source. Please cite this paper if the data are used in publications, and respect the licenses of the original sources when using (part of) their data as detailed in Metadata S1: Table 1.

     
    more » « less
  5. Abstract Objectives

    This study examines biological indicators of dental disease and nonspecific stress in human remains of three high altitude Himalayan archaeological sites to test whether shared ecological constraints led to similar bioarchaeological profiles in these markers.

    Methods

    Samples (n = 170) derive from three sites in Nepal dating to two periods (400–50 BCE and c. 400–650 CE). Dental diseases (caries, antemortem tooth loss, and abscesses) were assessed by both the number of individuals and the number of elements observed, while childhood stress markers included observation of growth disruptions (enamel hypoplasia and adult femur length/stature) and cranial porosities. Statistical analysis included chi‐square and Fisher's exact tests for categorical data and ANOVA and t‐tests for metric data.

    Results

    There are significant differences between the sites and sexes in frequencies of dental diseases in the adult samples. There are low frequencies of childhood stress markers overall and the femur length data show no significant differences across sites, but significant sexual dimorphism within each site. Females have reduced stature compared to contemporary Tibetan samples residing at a similar elevation.

    Conclusions

    Variations in dental disease frequencies between the sites may be due to local variations in microenvironment, cultural, and/or temporal differences in resource availability, food consumption and preparation, as well as the age structure of the samples. The low frequencies of markers for nonspecific stress may be indicative of the ability of these ancient Himalayan groups to successfully meet the challenges posed by the extreme conditions of high altitude living through biocultural adaptations.

     
    more » « less