skip to main content


Title: Molecular analyses of zebrafish V0v spinal interneurons and identification of transcriptional regulators downstream of Evx1 and Evx2 in these cells
Abstract Background

V0v spinal interneurons are highly conserved, glutamatergic, commissural neurons that function in locomotor circuits. We have previously shown that Evx1 and Evx2 are required to specify the neurotransmitter phenotype of these cells. However, we still know very little about the gene regulatory networks that act downstream of these transcription factors in V0v cells.

Methods

To identify candidate members of V0v gene regulatory networks, we FAC-sorted wild-type andevx1;evx2double mutant zebrafish V0v spinal interneurons and expression-profiled them using microarrays and single cell RNA-seq. We also used in situ hybridization to compare expression of a subset of candidate genes inevx1;evx2double mutants and wild-type siblings.

Results

Our data reveal two molecularly distinct subtypes of zebrafish V0v spinal interneurons at 48 h and suggest that, by this stage of development,evx1;evx2double mutant cells transfate into either inhibitory spinal interneurons, or motoneurons. Our results also identify 25 transcriptional regulator genes that require Evx1/2 for their expression in V0v interneurons, plus a further 11 transcriptional regulator genes that are repressed in V0v interneurons by Evx1/2. Two of the latter genes arehmx2andhmx3a. Intriguingly, we show that Hmx2/3a, repress dI2 interneuron expression ofskor1aandnefma, two genes that require Evx1/2 for their expression in V0v interneurons. This suggests that Evx1/2 might regulateskor1aandnefmaexpression in V0v interneurons by repressing Hmx2/3a expression.

Conclusions

This study identifies two molecularly distinct subsets of zebrafish V0v spinal interneurons, as well as multiple transcriptional regulators that are strong candidates for acting downstream of Evx1/2 to specify the essential functional characteristics of these cells. Our data further suggest that in the absence of both Evx1 and Evx2, V0v spinal interneurons initially change their neurotransmitter phenotypes from excitatory to inhibitory and then, later, start to express markers of distinct types of inhibitory spinal interneurons, or motoneurons. Taken together, our findings significantly increase our knowledge of V0v and spinal development and move us closer towards the essential goal of identifying the complete gene regulatory networks that specify this crucial cell type.

 
more » « less
NSF-PAR ID:
10476350
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Neural Development
Volume:
18
Issue:
1
ISSN:
1749-8104
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Ladybird homeobox (Lbx) transcription factors have crucial functions in muscle and nervous system development in many animals. Amniotes have two Lbx genes, but only Lbx1 is expressed in spinal cord. In contrast, teleosts have three lbx genes and we show here that zebrafish lbx1a, lbx1b and lbx2 are expressed by distinct spinal cell types, and that lbx1a is expressed in dI4, dI5 and dI6 interneurons, as in amniotes. Our data examining lbx expression in Scyliorhinus canicula and Xenopus tropicalis suggest that the spinal interneuron expression of zebrafish lbx1a is ancestral, whereas lbx1b has acquired a new expression pattern in spinal cord progenitor cells. lbx2 spinal expression was probably acquired in the ray-finned lineage, as this gene is not expressed in the spinal cords of either amniotes or S. canicula. We also show that the spinal function of zebrafish lbx1a is conserved with mouse Lbx1. In zebrafish lbx1a mutants, there is a reduction in the number of inhibitory spinal interneurons and an increase in the number of excitatory spinal interneurons, similar to mouse Lbx1 mutants. Interestingly, the number of inhibitory spinal interneurons is also reduced in lbx1b mutants, although in this case the number of excitatory interneurons is not increased. lbx1a;lbx1b double mutants have a similar spinal interneuron phenotype to lbx1a single mutants. Taken together these data suggest that lbx1b and lbx1a may be required in succession for correct specification of dI4 and dI6 spinal interneurons, although only lbx1a is required for suppression of excitatory fates in these cells. 
    more » « less
  2. Abstract Background

    Sexually dimorphic mating behaviors differ between sexes and involve gonadal hormones and possibly sexually dimorphic gene expression in the brain. However, the associations among the brain, gonad, and sexual behavior in teleosts are still unclear. Here, we utilized germ cells-freetdrd12knockout (KO) zebrafish, and steroid synthesis enzymecyp17a1-deficient zebrafish to investigate the differences and interplays in the brain–gonad–behavior axis, and the molecular control of brain dimorphism and male mating behaviors.

    Methods

    Tdrd12+/−;cyp17a1+/−double heterozygous parents were crossed to obtaintdrd12−/−;cyp17a1+/+(tdrd12 KO),tdrd12+/+;cyp17a1−/−(cyp17a1 KO), andtdrd12−/−;cyp17a1−/−(double KO) homozygous progenies. Comparative analysis of mating behaviors were evaluated using Viewpoint zebrafish tracking software and sexual traits were thoroughly characterized based on anatomical and histological experiments in these KOs and wild types. The steroid hormone levels (testosterone, 11-ketotestosterone and 17β-estradiol) in the brains, gonads, and serum were measured using ELISA kits. To achieve a higher resolution view of the differences in region-specific expression patterns of the brain, the brains of these KOs, and control male and female fish were dissected into three regions: the forebrain, midbrain, and hindbrain for transcriptomic analysis.

    Results

    Qualitative analysis of mating behaviors demonstrated thattdrd12−/−fish behaved in the same manner as wild-type males to trigger oviposition behavior, whilecyp17a1−/−and double knockout (KO) fish did not exhibit these behaviors. Based on the observation of sex characteristics, mating behaviors and hormone levels in these mutants, we found that the maintenance of secondary sex characteristics and male mating behavior did not depend on the presence of germ cells; rather, they depended mainly on the 11-ketotestosterone and testosterone levels secreted into the brain–gonad regulatory axis. RNA-seq analysis of different brain regions revealed that the brain transcript profile oftdrd12−/−fish was similar to that of wild-type males, especially in the forebrain and midbrain. However, the brain transcript profiles ofcyp17a1−/−and double KO fish were distinct from those of wild-type males and were partially biased towards the expression pattern of the female brain. Our results revealed important candidate genes and signaling pathways, such as synaptic signaling/neurotransmission, MAPK signaling, and steroid hormone pathways, that shape brain dimorphism and modulate male mating behavior in zebrafish.

    Conclusions

    Our results provide comprehensive analyses and new insights regarding the endogenous interactions in the brain–gonad–behavior axis. Moreover, this study revealed the crucial candidate genes and neural signaling pathways of different brain regions that are involved in modulating brain dimorphism and male mating behavior in zebrafish, which would significantly light up the understanding the neuroendocrine and molecular mechanisms modulating brain dimorphism and male mating behavior in zebrafish and other teleost fish.

    Graphical Abstract 
    more » « less
  3. Abstract

    Vertebrate nervous system function requires glial cells, including myelinating glia that insulate axons and provide trophic support that allows for efficient signal propagation by neurons. In vertebrate peripheral nervous systems, neural crest‐derived glial cells known as Schwann cells (SCs) generate myelin by encompassing and iteratively wrapping membrane around single axon segments. SC gliogenesis and neurogenesis are intimately linked and governed by a complex molecular environment that shapes their developmental trajectory. Changes in this external milieu drive developing SCs through a series of distinct morphological and transcriptional stages from the neural crest to a variety of glial derivatives, including the myelinating sublineage. Cues originate from the extracellular matrix, adjacent axons, and the developing SC basal lamina to trigger intracellular signaling cascades and gene expression changes that specify stages and transitions in SC development. Here, we integrate the findings fromin vitroneuron–glia co‐culture experiments within vivostudies investigating SC development, particularly in zebrafish and mouse, to highlight critical factors that specify SC fate. Ultimately, we connect classic biochemical and mutant studies with modern genetic and visualization tools that have elucidated the dynamics of SC development.

    This article is categorized under:

    Signaling Pathways > Cell Fate Signaling

    Nervous System Development > Vertebrates: Regional Development

     
    more » « less
  4. Schneider, David S. (Ed.)

    The immune system continually battles against pathogen-induced pressures, which often leads to the evolutionary expansion of immune gene families in a species-specific manner. For example, thepalsgene family expanded to 39 members in theCaenorhabditis elegansgenome, in comparison to a single mammalianpalsortholog. Our previous studies have revealed that two members of this family,pals-22andpals-25, act as antagonistic paralogs to control the Intracellular Pathogen Response (IPR). The IPR is a protective transcriptional response, which is activated upon infection by two molecularly distinct natural intracellular pathogens ofC.elegans–the Orsay virus and the fungusNematocida parisiifrom the microsporidia phylum. In this study, we identify a previously uncharacterized member of thepalsfamily,pals-17, as a newly described negative regulator of the IPR.pals-17mutants show constitutive upregulation of IPR gene expression, increased immunity against intracellular pathogens, as well as impaired development and reproduction. We also find that two other previously uncharacterizedpalsgenes,pals-20andpals-16, are positive regulators of the IPR, acting downstream ofpals-17. These positive regulators reverse the effects caused by the loss ofpals-17on IPR gene expression, immunity, and development. We show that the negative IPR regulator protein PALS-17 and the positive IPR regulator protein PALS-20 colocalize inside and at the apical side of intestinal epithelial cells, which are the sites of infection for IPR-inducing pathogens. In summary, our study demonstrates that severalpalsgenes from the expandedpalsgene family act as ON/OFF switch modules to regulate a balance between organismal development and immunity against natural intracellular pathogens inC.elegans.

     
    more » « less
  5. Abstract Aims

    Dissecting complex interactions among transcription factors (TFs), microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are central for understanding heart development and function. Although computational approaches and platforms have been described to infer relationships among regulatory factors and genes, current approaches do not adequately account for how highly diverse, interacting regulators that include noncoding RNAs (ncRNAs) control cardiac gene expression dynamics over time.

    Methods

    To overcome this limitation, we devised an integrated framework, cardiac gene regulatory modeling (CGRM) that integrates LogicTRN and regulatory component analysis bioinformatics modeling platforms to infer complex regulatory mechanisms. We then used CGRM to identify and compare the TF-ncRNA gene regulatory networks that govern early- and late-stage cardiomyocytes (CMs) generated by in vitro differentiation of human pluripotent stem cells (hPSC) and ventricular and atrial CMs isolated during in vivo human cardiac development.

    Results

    Comparisons of in vitro versus in vivo derived CMs revealed conserved regulatory networks among TFs and ncRNAs in early cells that significantly diverged in late staged cells. We report that cardiac genes (“heart targets”) expressed in early-stage hPSC-CMs are primarily regulated by MESP1, miR-1, miR-23, lncRNAs NEAT1 and MALAT1, while GATA6, HAND2, miR-200c, NEAT1 and MALAT1 are critical for late hPSC-CMs. The inferred TF-miRNA-lncRNA networks regulating heart development and contraction were similar among early-stage CMs, among individual hPSC-CM datasets and between in vitro and in vivo samples. However, genes related to apoptosis, cell cycle and proliferation, and transmembrane transport showed a high degree of divergence between in vitro and in vivo derived late-stage CMs. Overall, late-, but not early-stage CMs diverged greatly in the expression of “heart target” transcripts and their regulatory mechanisms.

    Conclusions

    In conclusion, we find that hPSC-CMs are regulated in a cell autonomous manner during early development that diverges significantly as a function of time when compared to in vivo derived CMs. These findings demonstrate the feasibility of using CGRM to reveal dynamic and complex transcriptional and posttranscriptional regulatory interactions that underlie cell directed versus environment-dependent CM development. These results with in vitro versus in vivo derived CMs thus establish this approach for detailed analyses of heart disease and for the analysis of cell regulatory systems in other biomedical fields.

     
    more » « less