skip to main content


This content will become publicly available on September 12, 2024

Title: Counterfactual communication without a trace in the transmission channel
We report an experimental realization of a modified counterfactual communication protocol that eliminates the dominant environmental trace left by photons passing through the transmission channel. Compared to Wheeler’s criterion for inferring past particle paths, as used in prior protocols, our trace criterion provides stronger support for the claim of the counterfactuality of the communication. We verify the lack of trace left by transmitted photons via tagging the propagation arms of an interferometric device by distinct frequency-shifts and finding that the collected photons have no frequency shift which corresponds to the transmission channel. As a proof of principle, we counterfactually transfer a quick response code image with sufficient fidelity to be scanned with a cell phone.  more » « less
Award ID(s):
1915015
NSF-PAR ID:
10476518
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
nature.com
Date Published:
Journal Name:
npj Quantum Information
Volume:
9
Issue:
1
ISSN:
2056-6387
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The ability to engineer the spatial wavefunction of photons has enabled a variety of quantum protocols for communication, sensing, and information processing. These protocols exploit the high dimensionality of structured light enabling the encoding of multiple bits of information in a single photon, the measurement of small physical parameters, and the achievement of unprecedented levels of security in schemes for cryptography. Unfortunately, the potential of structured light has been restrained to free-space platforms in which the spatial profile of photons is preserved. Here, we make an important step forward to using structured light for fiber optical communication. We introduce a classical encryption protocol in which the propagation of high-dimensional spatial modes in multimode fibers is used as a natural mechanism for encryption. This provides a secure communication channel for data transmission. The information encoded in spatial modes is retrieved using artificial neural networks, which are trained from the intensity distributions of experimentally detected spatial modes. Our on-fiber communication platform allows us to use single spatial modes for information encoding as well as the high-dimensional superposition modes for bit-by-bit and byte-by-byte encoding respectively. This protocol enables one to recover messages and images with almost perfect accuracy. Our classical smart protocol for high-dimensional encryption in optical fibers provides a platform that can be adapted to address increased per-photon information capacity at the quantum level, while maintaining the fidelity of information transfer. This is key for quantum technologies relying on structured fields of light, particularly those that are challenged by free-space propagation. 
    more » « less
  2. In this paper, we consider a remote inference system, where a neural network is used to infer a time-varying target (e.g., robot movement), based on features (e.g., video clips) that are progressively received from a sensing node (e.g., a camera). Each feature is a temporal sequence of sensory data. The inference error is determined by (i) the timeliness and (ii) the sequence length of the feature, where we use Age of Information (AoI) as a metric for timeliness. While a longer feature can typically provide better inference performance, it often requires more channel resources for sending the feature. To minimize the time-averaged inference error, we study a learning and communication co-design problem that jointly optimizes feature length selection and transmission scheduling. When there is a single sensor-predictor pair and a single channel, we develop low-complexity optimal co-designs for both the cases of time-invariant and time-variant feature length. When there are multiple sensor-predictor pairs and multiple channels, the co-design problem becomes a restless multi-arm multi-action bandit problem that is PSPACE-hard. For this setting, we design a low-complexity algorithm to solve the problem. Trace-driven evaluations demonstrate the potential of these co-designs to reduce inference error by up to 10000 times. 
    more » « less
  3. Abstract

    Radiative communication using electro-magnetic (EM) fields amongst the wearable and implantable devices act as the backbone for information exchange around a human body, thereby enabling prime applications in the fields of connected healthcare, electroceuticals, neuroscience, augmented and virtual reality. However, owing to such radiative nature of the traditional wireless communication, EM signals propagate in all directions, inadvertently allowing an eavesdropper to intercept the information. In this context, the human body, primarily due to its high water content, has emerged as a medium for low-loss transmission, termed human body communication (HBC), enabling energy-efficient means for wearable communication. However, conventional HBC implementations suffer from significant radiation which also compromises security. In this article, we present Electro-Quasistatic Human Body Communication (EQS-HBC), a method for localizing signals within the body using low-frequency carrier-less (broadband) transmission, thereby making it extremely difficult for a nearby eavesdropper to intercept critical private data, thus producing a covert communication channel, i.e. the human body. This work, for the first time, demonstrates and analyzes the improvement in private space enabled by EQS-HBC. Detailed experiments, supported by theoretical modeling and analysis, reveal that the quasi-static (QS) leakage due to the on-body EQS-HBC transmitter-human body interface is detectable up to <0.15 m, whereas the human body alone leaks only up to ~0.01 m, compared to >5 mdetection range for on-body EM wireless communication, highlighting the underlying advantage of EQS-HBC to enable covert communication.

     
    more » « less
  4. null (Ed.)
    Communication during touch provides a seamless and natural way of interaction between humans and ambient intelligence. Current techniques that couple wireless transmission with touch detection suffer from the problem of selectivity and security, i.e., they cannot ensure communication only through direct touch and not through close proximity. We present  BodyWire-HCI , which utilizes the human body as a wire-like communication channel, to enable human–computer interaction, that for the first time, demonstrates selective and physically secure communication strictly during touch. The signal leakage out of the body is minimized by utilizing a novel, low frequency Electro-QuasiStatic Human Body Communication (EQS-HBC) technique that enables interaction strictly when there is a conductive communication path between the transmitter and receiver through the human body. Design techniques such as capacitive termination and voltage mode operation are used to minimize the human body channel loss to operate at low frequencies and enable EQS-HBC. The demonstrations highlight the impact of  BodyWire-HCI in enabling new human–machine interaction modalities for variety of application scenarios such as secure authentication (e.g., opening a door and pairing a smart device) and information exchange (e.g., payment, image, medical data, and personal profile transfer) through touch (https://www.youtube.com/watch?v=Uwrig2XQIH8). 
    more » « less
  5. The underwater acoustic (UWA) channel is a complex and stochastic process with large spatial and temporal dynamics. This work studies the adaptation of the communication strategy to the channel dynamics. Specifically, a set of communication strategies are considered, including frequency shift keying (FSK), single-carrier communication, and multicarrier communication. Based on the channel condition, a reinforcement learning (RL) algorithm, the Depth Determined Strategy Gradient (DDPG) method along with a Gumbel-softmax scheme is employed for intelligent and adaptive switching among those communication strategies. The adaptive switching is performed on a transmission block-by-block basis, with the goal of maximizing a long-term system performance. The reward function is defined based on the energy efficiency and the spectral efficiency of the communication strategies. Simulation results reveal that the proposed method outperforms a random selection method in time-varying channels. 
    more » « less