skip to main content


Title: Comparison of Low‐Density Lipoprotein Oxidation by Hydrophilic O( 3 P)‐Precursors and Lipid‐O( 3 P)‐Precursor Conjugates
Abstract

Lipid oxidation by reactive oxygen species (ROS) provide several different oxidation products that have been implicated in inflammatory responses. Ground state atomic oxygen [O(3P)] is produced by the photodeoxygenation of certain heterocyclic oxides and has a reactivity that is unique from other ROS. Due to the reactive nature of O(3P), the site of O(3P)‐generation is expected to influence the products in heterogenous solutions or environments. In this work, the oxidation of low‐density lipoprotein (LDL) by lipids with covalently bound O(3P)‐photoprecursors was compared to more hydrophilic O(3P)‐photoprecursors. Lipid oxidation products were quantified after Bligh‐Dyer extraction and pentafluorobenzyl bromide (PFB) derivatization by GC–MS. Unlike the more hydrophilic O(3P)‐photoprecursors, the oxidation of LDL during the irradiation of lipid‐(O3P)‐photoprecursor conjugates showed little quenching by the addition of the O(3P)‐scavenging sodium allyl sulfonate. This indicated that lipophilic O(3P)‐photoprecursors are expected to generate lipid oxidation products where other more hydrophilic O(3P)‐photoprecursors could be quenched by other reactive groups present in solution or the environment.

 
more » « less
Award ID(s):
1900417
PAR ID:
10476577
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Photochemistry and Photobiology
Volume:
99
Issue:
6
ISSN:
0031-8655
Format(s):
Medium: X Size: p. 1412-1419
Size(s):
p. 1412-1419
Sponsoring Org:
National Science Foundation
More Like this
  1. A beneficial property of photogenerated reactive oxygen species (ROS) is the capability of oxidant generation within a specific location or organelle inside a cell. Dibenzothiophene S -oxide ( DBTO ), which is known to undergo a photodeoxygenation reaction to generate ground state atomic oxygen [O( 3 P)] upon irradiation, was functionalized to afford localization within the plasma membrane of cells. The photochemistry, as it relates to oxidant generation, was studied and demonstrated that the functionalized DBTO derivatives generated O( 3 P). Irradiation of these lipophilic O( 3 P)-precursors in the presence of LDL and within RAW 264.7 cells afforded several oxidized lipid products (oxLP) in the form of aldehydes. The generation of a 2-hexadecenal ( 2-HDEA ) was markedly increased in irradiations where O( 3 P) was putatively produced. The substantial generation of 2-HDEA is not known to accompany the production of other ROS. These cellular irradiation experiments demonstrate the potential of inducing oxidation with O( 3 P) in cells. 
    more » « less
  2. Abstract

    Cytochrome P450 (P450, CYP) 19A1 is the steroid aromatase, the enzyme responsible for the 3‐step conversion of androgens (androstenedione or testosterone) to estrogens. The final step is C−C bond scission (removing the 19‐oxo group as formic acid) that proceeds via a historically controversial reaction mechanism. The two competing mechanistic possibilities involve a ferric peroxide anion (Fe3+O2, Compound 0) and a perferryl oxy species (FeO3+, Compound I). One approach to discern the role of each species in the reaction is with the use of oxygen‐18 labeling, i.e., from18O2and H218O of the reaction product formic acid. We applied this approach, using several technical improvements, to study the deformylation of 19‐oxo‐androstenedione by human P450 19A1 and of a model secosteroid, 3‐oxodecaline‐4‐ene‐10‐carboxaldehyde (ODEC), by rabbit P450 2B4. Both aldehyde substrates were sensitive to non‐enzymatic acid‐catalyzed deformylation, yielding 19‐norsteroids, and conditions were established to avoid issues with artifactual generation of formic acid. The Compound 0 reaction pathway predominated (i.e., Fe3+O2) in both P450 19A1 oxidation of 19‐oxo‐androstenedione and P450 2B4 oxidation of ODEC. The P450 19A1 results contrast with our prior conclusions (J. Am. Chem. Soc.2014, 136, 15016–16025), attributed to several technical modifications.

     
    more » « less
  3. Abstract

    A density functional theoretical (DFT) study is presented, implicating a1O2oxidation process to reach a dihydrobenzofuran from the reaction of the natural homoallylic alcohol, glycocitrine. Our results predict an interconversion between glycocitrine and aniso‐hydroperoxide intermediate [R(H)O+O] that provides a key path in the chemistry which then follows. Formations of allylic hydroperoxides are unlikely from a1O2‘ene’ reaction. Instead, the dihydrobenzofuran arises by1O2oxidation facilitated by a 16° curvature of the glycocitrine ring imposed by a pyramidalN‐methyl group. This curvature facilitates the formation of theiso‐hydroperoxide, which is analogous to theisospecies CH2I+Iand CHI2+Iformed by UV photolysis of CH2I2and CHI3. Theiso‐hydroperoxide is also structurally reminiscent of carbonyl oxides (R2C=O+O) formed in the reaction of carbenes and oxygen. Our DFT results point to intermolecular process, in which theiso‐hydroperoxide's fate relates to O‐transfer and H2O dehydration reactions for new insight into the biosynthesis of dihydrobenzofuran natural products.

     
    more » « less
  4. The gene encoding the cyanobacterial ferritinSynFtn is up-regulated in response to copper stress. Here, we show that, whileSynFtn does not interact directly with copper, it is highly unusual in several ways. First, its catalytic diiron ferroxidase center is unlike those of all other characterized prokaryotic ferritins and instead resembles an animal H-chain ferritin center. Second, as demonstrated by kinetic, spectroscopic, and high-resolution X-ray crystallographic data, reaction of O2with the di-Fe2+center results in a direct, one-electron oxidation to a mixed-valent Fe2+/Fe3+form. Iron–O2chemistry of this type is currently unknown among the growing family of proteins that bind a diiron site within a four α-helical bundle in general and ferritins in particular. The mixed-valent form, which slowly oxidized to the more usual di-Fe3+form, is an intermediate that is continually generated during mineralization. Peroxide, rather than superoxide, is shown to be the product of O2reduction, implying that ferroxidase centers function in pairs via long-range electron transfer through the protein resulting in reduction of O2bound at only one of the centers. We show that electron transfer is mediated by the transient formation of a radical on Tyr40, which lies ∼4 Å from the diiron center. As well as demonstrating an expansion of the iron–O2chemistry known to occur in nature, these data are also highly relevant to the question of whether all ferritins mineralize iron via a common mechanism, providing unequivocal proof that they do not.

     
    more » « less
  5. Abstract

    Methane over‐oxidation by copper‐exchanged zeolites prevents realization of high‐yield catalytic conversion. However, there has been little description of the mechanism for methane over‐oxidation at the copper active sites of these zeolites. Using density functional theory (DFT) computations, we reported that tricopper [Cu3O3]2+active sites can over‐oxidize methane. However, the role of [Cu3O3]2+sites in methane‐to‐methanol conversion remains under debate. Here, we examine methane over‐oxidation by dicopper [Cu2O]2+and [Cu2O2]2+sites using DFT in zeolite mordenite (MOR). For [Cu2O2]2+, we considered the μ‐(η22) peroxo‐, and bis(μ‐oxo) motifs. These sites were considered in the eight‐membered (8MR) ring of MOR. μ‐(η22) peroxo sites are unstable relative to the bis(μ‐oxo) motif with a small interconversion barrier. Unlike [Cu2O]2+which is active for methane C−H activation, [Cu2O2]2+has a very large methane C−H activation barrier in the 8MR. Stabilization of methanol and methyl at unreacted dicopper sites however leads to over‐oxidation via sequential hydrogen atom abstraction steps. For methanol, these are initiated by abstraction of the CH3group, followed by OH and can proceed near 200 °C. Thus, for [Cu2O]2+and [Cu2O2]2+species, over‐oxidation is an inter‐site process. We discuss the implications of these findings for methanol selectivity, especially in comparison to the intra‐site process for [Cu3O3]2+sites and the role of Brønsted acid sites.

     
    more » « less