skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A storyline analysis of Hurricane Irma’s precipitation under various levels of climate warming
Abstract Understanding how extreme weather, such as tropical cyclones, will change with future climate warming is an interesting computational challenge. Here, the hindcast approach is used to create different storylines of a particular tropical cyclone, Hurricane Irma (2017). Using the community atmosphere model, we explore how Irma’s precipitation would change under various levels of climate warming. Analysis is focused on a 48 h period where the simulated hurricane tracks reasonably represent Irma’s observed track. Under future scenarios of 2 K, 3 K, and 4 K global average surface temperature increase above pre-industrial levels, the mean 3-hourly rainfall rates in the simulated storms increase by 3–7% K−1compared to present. This change increases in magnitude for the 95th and 99th percentile 3-hourly rates, which intensify by 10–13% K−1and 17–21% K−1, respectively. Over Florida, the simulated mean rainfall accumulations increase by 16–26% K−1, with local maxima increasing by 18–43% K−1. All percent changes increase monotonically with warming level.  more » « less
Award ID(s):
1950052
PAR ID:
10476596
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
19
Issue:
1
ISSN:
1748-9326
Format(s):
Medium: X Size: Article No. 014004
Size(s):
Article No. 014004
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract One of the most costly effects of climate change will be its impact on extreme weather events, including tropical cyclones (TCs). Understanding these changes is of growing importance, and high resolution global climate models are providing potential for such studies, specifically for TCs. Beyond the difficulties associated with TC behavior in a warming climate, the extratropical transition (ET) of TCs into post-tropical cyclones (PTCs) creates another challenge when understanding these events and any potential future changes. PTCs can produce excessive rainfall despite losing their original tropical characteristics. The present study examines the representation of PTCs and their precipitation in three high resolution (25–50 km) climate models: CNRM, MRI, and HadGEM. All three of these models agree on a simulated decrease in TC and PTC events in the future warming scenario, yet they lack consistency in simulated regional patterns of these changes, which is further evident in regional changes in PTC-related precipitation. The models also struggle with their represented intensity evolution of storms during and after the ET process. Despite these limitations in simulating intensity and regional characteristics, the models all simulate a shift toward more frequent rain rates above 10 mm h−1in PTCs. These high rain rates become 4%–12% more likely in the warmer climate scenario, resulting in a 5%–12% increase in accumulated rainfall from these rates. 
    more » « less
  2. Abstract The state dependence of cloud feedback—its variation with the mean state climate—has been found in many paleoclimate and contemporary climate simulations. Previous results have shown inconsistencies in the sign, magnitude, and underlying mechanisms of state dependence. To address this, we utilize a perturbed parameter ensemble (PPE) approach with fixed sea surface temperature (SST) in the Community Atmosphere Model, version 6. Our suites of PPEs span a wide range of global mean surface temperatures (GMSTs), with spatially uniform SST perturbations of −4, 0, 4, 8, 12, and 16 K from the preindustrial. The results reveal a nonmonotonic variation with GMSTs: Cloud feedback increases under both cooler and warmer-than-preindustrial conditions, with a rise of ∼0.1 W m−2K−1under a 4-K colder climate and ∼0.4 W m−2K−1under a 12-K warmer climate. This complexity arises from differing cloud feedback responses in high and low latitudes. In high latitudes, cloud feedback consistently rises with warming, likely driven by a moist adiabatic mechanism that influences cloud liquid water. The low-latitude feedback increases under both cooler and warmer conditions, likely influenced by changes in the lower-tropospheric stability. This stability shift is tied to nonlinearity in thermodynamic responses, particularly in the tropical latent heating, alongside potential state-dependent changes in tropical circulations. Under warmer-than-preindustrial conditions, the increase in cloud feedback with warming is negatively correlated with its preindustrial value. Our PPE approach takes the model parameter uncertainty into account and emphasizes the critical role of state dependence in understanding past and predicting future climates. Significance StatementThis study focuses on how cloud feedback—one of the most uncertain aspects of climate change—varies as global temperatures rise. We found that the cloud feedback decreases at first with warming and then increases, showing significant variation. This complexity stems from nonlinear thermodynamics, such as the Clapeyron–Clausius relationship, which describes how temperature affects moisture in the atmosphere. Our results indicate that the cloud feedback depends on the level of global warming, which is a significant factor rooted in fundamental physics. Recognizing this dependence is important for studies that aim to interpret past climates and predict future climate changes. 
    more » « less
  3. Abstract The parametric hurricane rainfall model (PHRaM), firstly introduced in 2007, has been widely used to forecast and quantify tropical-cyclone-induced rainfall (TC rainfall). The PHRaM is much more computationally efficient than global climate models, but PHRaM cannot be effectively utilized in the context of climate change because it does not have any parameters to capture the increase of tropospheric water vapor under the warming world. This study develops a new model that incorporates tropospheric water vapor to the PHRaM framework, named as the PHRaM with moisture (PHRaMM). The PHRaMM is trained to best fit the TC rainfall over the western North Pacific (WNP) unlike the PHRaM trained with the TCs over the continental US. The PHRaMM reliably simulates radial profile of TC rainfall and spatial distribution of accumulated rainfall during landfall in the present climate with the better prediction skills than existing statistical and operational numerical models. Using the PHRaMM, we evaluated the impacts of TC intensity and environmental moisture increase on TC rainfall change in a future climate. An increased TC intensity causes TC rainfall to increase in the inner-core region but to decrease in the outer region, whereas an increased environmental moisture causes the TC rainfall to increase over the entire TC area. According to the both effects of increased TC intensity and environmental moisture, the PHRaMM projected that the WNP TC rainfall could increase by 4.61–8.51% in the inner-core region and by 17.96–20.91% over the entire TC area under the 2-K warming scenario. 
    more » « less
  4. Hurricanes are recurring high-energy disturbances in coastal regions that change community structure and function of mangrove wetlands. However, most of the studies assessing hurricane impacts on mangroves have focused on negative effects without considering the positive influence of hurricane-induced sediment deposition and associated nutrient fertilization on mangrove productivity and resilience. Here, we quantified how Hurricane Irma influenced soil nutrient pools, vertical accretion, and plant phosphorus (P) uptake after its passage across the Florida Coastal Everglades in September 2017. Vertical accretion from Irma’s deposits was 6.7 to 14.4 times greater than the long-term (100 y) annual accretion rate (0.27 ± 0.04 cm y−1). Storm deposits extended up to 10-km inland from the Gulf of Mexico. Total P (TP) inputs were highest at the mouth of estuaries, with P concentration double that of underlying surface (top 10 cm) soils (0.19 ± 0.02 mg cm−3). This P deposition contributed 49 to 98% to the soil nutrient pool. As a result, all mangrove species showed a significant increase in litter foliar TP and soil porewater inorganic P concentrations in early 2018, 3 mo after Irma’s impact, thus underscoring the interspecies differences in nutrient uptake. Mean TP loading rates were five times greater in southwestern (94 ± 13 kg ha−1d−1) mangrove-dominated estuaries compared to the southeastern region, highlighting the positive role of hurricanes as a natural fertilization mechanism influencing forest productivity. P-rich, mineral sediments deposited by hurricanes create legacies that facilitate rapid forest recovery, stimulation of peat soil development, and resilience to sea-level rise. 
    more » « less
  5. Abstract Tropical overshooting deep convections (ODCs) play a vital role in vertical transport of boundary layer pollutants, especially short‐lived species, to upper troposphere and lower stratosphere, with important implications for stratospheric ozone and climate. We use simulations from a global cloud‐system resolving model, Nonhydrostatic Icosahedral Atmosphere Model (NICAM), to study ODC changes from historical period to the end of the 21st century. NICAM well reproduces Tropical Rainfall Measuring Mission‐satellite observed ODC spatiotemporal patterns. The future occurrences of ODCs with cloud top height above 15.5, 16.9, and 18.4 km scaled by the global temperature increase will increase by 7%/K, 27%/K, and 90%/K, respectively, over ocean where the atmosphere is becoming warmer and wetter. The corresponding changes are −1%/K, 10%/K, and 37%/K over land where the atmosphere will become hotter but drier. Relative to tropical cold point tropopause height, ODCs will only change by 3%/K, with 6%/K over the ocean but −3%/K on land. 
    more » « less