Hydrogen chloride (HCl) is a key repository of chlorine in the interstellar medium. Accurate determinations of its abundance are critical to assessing the chlorine elemental abundance and constraining stellar nucleosynthesis models. To aid in modeling recent and future observations of HCl rovibrational spectra, we present cross sections and rate coefficients for collisions between HCl and molecular hydrogen. Transitions between rovibrational states of HCl are considered for temperatures ranging from 10 to 3000 K. Cross sections are computed using a full dimensional quantum close-coupling (CC) method and a reduced dimensionality coupled-states (CS) approach. The CS results, benchmarked against the CC results, are used with a recoupling approach to calculate hyperfine-resolved rate coefficients for rovibrational transitions of HCl induced by H2. The rate coefficients will allow for a better determination of the HCl abundance in the interstellar medium and an improved understanding of interstellar chlorine chemistry. We demonstrate the utility of the new rate coefficients in a nonthermodynamic equilibrium radiative transfer model applied to observations of HCl rovibrational transitions in a circumstellar shell.
Cross-sections and rate coefficients for rovibronic excitation of the CH+ ion by electron impact and dissociative recombination of CH+ with electrons are evaluated using a theoretical approach combining an R-matrix method and molecular quantum defect theory. The method has been developed and tested, comparing the theoretical results with the data from the recent Cryogenic Storage Ring experiment. The obtained cross-sections and rate coefficients evaluated for temperatures from 1 to 10 000 K could be used for plasma modelling in the interpretation of astrophysical observations and also in the technological applications where the molecular hydrocarbon plasma is present.
more » « less- NSF-PAR ID:
- 10476604
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 527
- Issue:
- 3
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 5238-5243
- Size(s):
- p. 5238-5243
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Cross sections and thermal rate coefficients for rotational and vibration excitation of the four stable isotopologues of the 4 HeH + ion by electron impact are presented. The data are calculated using a previously developed theoretical approach. The obtained rate coefficients are fitted to analytical formulas with the 10–10,000 K interval of applicability. These present results could be useful in tokamak plasma and astrophysical modeling and can help in the detection of these species in the interstellar medium.more » « less
-
ABSTRACT This paper presents rate coefficients for transitions between rotational levels of the A-type and E-type nuclear spin modifications of methanol induced by collisions with molecular hydrogen. These rate coefficients are required for an accurate determination of methanol abundance in the interstellar medium, where local thermodynamic equilibrium conditions generally do not apply. Time-independent close-coupling quantum scattering calculations have been employed to calculate cross-sections and rate coefficients for the (de-)excitation of methanol in collisions with para- and ortho-H2. These calculations utilized a potential energy surface (PES) for the interaction of methanol with H2 recently computed by the explicitly correlated CCSD(T)-F12a coupled-cluster method that employed a correlation-consistent aug-cc-pVTZ basis. Rate coefficients for temperatures ranging from 3 to 250 K were calculated for all transitions among the first 76 rotational levels of both A-type and E-type methanol, whose energies are less than or equal to 170 K. These rate coefficients are compared with those by Rabli and Flower who carried out coupled-state calculations using a PES computed by second-order many-body perturbation theory. Simple radiative transfer calculations using the present set of rate coefficients are also reported and compared with such calculations using the rate coefficients previously computed by Rabli and Flower.
-
Cross-sections and thermally averaged rate coefficients for vibration (de-)excitation of a water molecule by electron impact are computed; one and two quanta excitations are considered for all three normal modes. The calculations use a theoretical approach that combines the normal mode approximation for vibrational states of water, a vibrational frame transformation employed to evaluate the scattering matrix for vibrational transitions and the UK molecular R-matrix code. The interval of applicability of the rate coefficients is from 10 to 10,000 K. A comprehensive set of calculations is performed to assess uncertainty of the obtained data. The results should help in modelling non-LTE spectra of water in various astrophysical environments.more » « less
-
This study presents calculations for cross sections of the vibrational excitation of H2O (X1A1) via electron impact. The theoretical approach employed here is based on first principles only, combining electron-scattering calculations performed using the UK R-matrix codes for several geometries of the target molecule, three-dimensional (3D) vibrational states of H2O, and 3D vibrational frame transformation. The aim is to represent the scattering matrix for the electron incident of the molecule. The vibrational wave functions were obtained numerically, without the normal-mode approximation, so that the interactions and transitions between vibrational states assigned to different normal modes could be accounted for. The thermally averaged rate coefficients were derived from the calculated cross sections for temperatures in the 10–10 000 K interval and analytical fits for rate coefficients were also provided. We assessed the uncertainty estimations of the obtained data for subsequent applications of the rate coefficients in modelling the non-local thermal equilibrium (non-LTE) spectra of water in various astrophysical environments.more » « less