skip to main content

Title: Seismic imaging of the Northern Andean subduction zone from teleseismic tomography: a torn and fragmented Nazca slab

The Nazca-South America subduction zone in Ecuador is characterized by a complicated along-strike geometry as the slab transitions from flat slab subduction in the south, with the Peruvian flat slab, to what has been characterized as ‘normal’ dipping subduction beneath central Ecuador. Plate convergence additionally changes south to north as the trench takes on a convex shape. Highly heterogeneous bathymetry at the trench, including the aseismic oceanic Carnegie Ridge (CR), and sparse intermediate-depth seismicity has led many to speculate about the behaviour of the downgoing plate at depth. In this study, we present a finite-frequency teleseismic P-wave tomography model of the northern Andes beneath Ecuador and Colombia from 90 to 1200 km depth. Our model builds on prior tomography models in South America by adding relative traveltime residuals recorded at stations in Ecuador. The complete data set is comprised of 114 096 relative traveltime residuals from 1133 stations across South America, with the added data serving to refine the morphology of the Nazca slab in the mantle beneath the northern Andes. Our tomography model shows a Nazca slab with a fragmented along-strike geometry and the first teleseismic images of several proposed slab tears in this region. At the northern edge of the Peruvian flat slab in southern Ecuador, we image a shallow tear at 95–200 km depth that appears to connect mantle flow from beneath the flat slab to the Ecuadorian Arc. Beneath central Ecuador at the latitudes of the CR, the Nazca slab is continuous into the lower mantle. Beneath southern Colombia, the Malpelo Tear breaks the Nazca slab below ∼200 km depth.

more » « less
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Geophysical Journal International
Medium: X Size: p. 593-606
p. 593-606
Sponsoring Org:
National Science Foundation
More Like this
  1. Subduction of the very young (<15 Myr old) oceanic lithosphere of the Nazca plate in central to southern Colombia is observationally related to an unusually high and unusually variable amount of intermediate (>50 km) depth seismicity. From 2010 through 2019 89% of central and southern Colombia’s 11,466 intermediate depth events occurred between 3.5°N and 5.5°N, highlighting these unusual characteristics of the young slab. In addition, morphologic complexity and possible tears characterize the Nazca slab in Colombia and complicate mantle flow in the region. Prior SKS-phase shear-wave splitting results indicate sub-slab anisotropy is dominated by plate motion parallel-to-subparallel orientations in the region, suggesting the young slab has entrained a relatively thick portion of the sub-slab mantle. These observations suggest the subduction of young lithosphere has significant effects on both the overlying and underlying asthenosphere in the Colombia subduction zone. Here we use more than 10 years of data to calculate receiver functions for the Red Sismológica Nacional de Colombia’s network of broadband seismometers. These receiver functions allow us to tie these prior observations of the Colombia subduction zone to distinct, structural features of the slab. We find that the region of high seismicity corresponds to a low seismic velocity feature along the top of the subducting plate between 3.5°N and 5.5°N that is not present to the south. Moderately elevated P-wave velocity to S-wave velocity ratios are also observed within the slab in the north. This feature likely represents hydrated slab mantle and/or uneclogitized oceanic crust extending to a deeper depth in the north of the region which may provide fluids to drive slab seismicity. We further find evidence for a thick layer of material along the slab’s lithosphere-asthenosphere boundary characterized by spatially variable anisotropy. This feature likely represents entrained asthenosphere at the base of the plate sheared by both the overlying plate and complex flow related to proposed slab tears just north and south of the study region. These observations highlight how structural observations provide key contextual constraints on short-term (seismogenic) and long-term (anisotropic fabric) dynamic processes in the Colombia subduction zone. Plain-language Summary The Nazca oceanic plate is very young (<15 million years old) where it is pulled or subducted beneath the South America plate in central and southern Colombia. Earthquakes occurring in the subducted Nazca plate at depths greater than 50 km are nearly 9x more common in central Colombia than in southern Colombia. The subducted Nazca plate also has a complex shape in this region and may have been torn both in northern Colombia and to the south near the Colombia-Ecuador border. The slow flow of mantle rock beneath the subducted plate is believed to be affected by this and earlier studies have inferred this flow is mostly in the same direction as the subducting plate's motion. We have used 10+ years of data to calculate receiver functions, which can detect changes in the velocity of seismic waves at the top and bottom of the subducted plate to investigate these features. We found that the Nazca plate is either hydrated or has rocks with lower seismic velocities at its top in the central part of Colombia where earthquakes are common. We also find that a thick layer of mantle rock at the base of the subducted plate has been sheared. 
    more » « less
  2. Abstract

    Subduction of the Nazca plate results in the uneven distributions of earthquakes and arc volcanoes along the South America's western margin. Here, we construct a high‐resolution shear‐wave velocity model from immediately offshore to the backarc in South America, using advanced full‐wave ambient noise tomography. Our new model confirms and provides further constraints on three major features, including (a) extensive low‐velocity anomalies within the continental crust, (b) two high‐velocity flat slab segments located beneath southern Peru and central Chile, and (c) complex slab geometry at flat‐to‐normal transitional subduction. The flat slab segments roughly correlate with the volcanic gaps but not with the seismicity gaps. We suggest that variations of slab geometry along strike and down dip have significantly modified the flow patterns within the mantle wedge. Subduction of oceanic ridges has altered the slab dehydration processes, which can influence the distribution of arc volcanism and the occurrence of intermediate‐depth earthquakes.

    more » « less
  3. Abstract

    The Caribbean plate subducts beneath northwest South America at a shallow angle due to a large igneous province that added up to 12 km of buoyant crust. The overriding plate lacks volcanism and exhibits Laramide‐style uplifts over 500 km from the trench. Here, we illuminate the subduction structures through finite frequency teleseismic P‐wave tomography and connect those structures to the Laramide‐style deformation on the overriding plate. We use a new data set collected from the Caribbean‐Mérida Andes seismic experiment comprised of 65 temporary broadband stations integrated with permanent stations from the Colombian and Venezuelan national networks. We identify three segments of subducting Caribbean plate with one segment completely detached from the surface. The timing of the detachment aligns with other regional events, including the uplift of the Mérida Andes, about 10 Ma. Slab buoyancy post‐detachment likely resulted in recoupling with the overriding plate, reactivation of Jurassic‐aged rift structures and subsequent uplift of the Mérida Andes. Mantle counterflow over the broken segment induced by rollback of the attached slab likely contributed to the uplift of the Mérida Andes. We conclude that the northern limit of subduction lies south of the Oca‐Ancón fault, though the fault itself may be the surface expression of the boundary. The southern limit of subduction lies south of our study area.

    more » « less
  4. A typical subduction of an oceanic plate beneath a continent is expected to be accompanied by arc volcanoes along the convergent margin. However, subduction of the Cocos plate at the Middle American subduction system has resulted in an uneven distribution of magmatism/volcanism along strike. Here we construct a new three-dimensional shear-wave velocity model of the entire Middle American subduction system, using full-wave ambient noise tomography. Our model reveals significant variations of the oceanic plates along strike and down dip, in correspondence with either weakened or broken slabs after subduction. The northern and southern segments of the Cocos plate, including the Mexican flat slab subduction, are well imaged as high-velocity features, where a low-velocity mantle wedge exists and demonstrate a strong correlation with the arc volcanoes. Subduction of the central Cocos plate encounters a thick high-velocity feature beneath North America, which hinders the formation of a typical low-velocity mantle wedge and arc volcanoes. We suggest that the presence of slab tearing at both edges of the Mexican flat slab has been modifying the mantle flows, resulting in the unusual arc volcanism. 
    more » « less
  5. Abstract

    Laboratory experiments and geodynamic simulations demonstrate that poloidal- and toroidal-mode mantle flows develop around subduction zones. Here, we use a new 3-D azimuthal anisotropy model constructed by full waveform inversion, to infer deep subduction-induced mantle flows underneath Middle America. At depths shallower than 150 km, poloidal-mode flow is perpendicular to the trajectory of the Middle American Trench. From 300 to 450 km depth, return flows surround the edges of the Rivera and Atlantic slabs, while escape flows are inferred through slab windows beneath Panama and central Mexico. Furthermore, at 700 km depth, the study region is dominated by the Farallon anomaly, with fast axes perpendicular to its strike, suggesting the development of lattice-preferred orientations by substantial stress. These observations provide depth-dependent seismic anisotropy for future mantle flow simulations, and call for further investigations about the deformation mechanisms and elasticity of minerals in the transition zone and uppermost lower mantle.

    more » « less