skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Moral judgment in realistic traffic scenarios: moving beyond the trolley paradigm for ethics of autonomous vehicles
Abstract The imminent deployment of autonomous vehicles requires algorithms capable of making moral decisions in relevant traffic situations. Some scholars in the ethics of autonomous vehicles hope to align such intelligent systems with human moral judgment. For this purpose, studies like the Moral Machine Experiment have collected data about human decision-making in trolley-like traffic dilemmas. This paper first argues that the trolley dilemma is an inadequate experimental paradigm for investigating traffic moral judgments because it does not include agents’ character-based considerations and is incapable of facilitating the investigation of low-stakes mundane traffic scenarios. In light of the limitations of the trolley paradigm, this paper presents an alternative experimental framework that addresses these issues. The proposed solution combines the creation of mundane traffic moral scenarios using virtual reality and the Agent-Deed-Consequences (ADC) model of moral judgment as a moral-psychological framework. This paradigm shift potentially increases the ecological validity of future studies by providing more realism and incorporating character considerations into traffic actions.  more » « less
Award ID(s):
2043612
PAR ID:
10476717
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
AI & SOCIETY
Volume:
40
Issue:
2
ISSN:
0951-5666
Format(s):
Medium: X Size: p. 1037-1048
Size(s):
p. 1037-1048
Sponsoring Org:
National Science Foundation
More Like this
  1. Autonomous vehicles (AV) hold great potential to increase road safety, reduce traffic congestion, and improve mobility systems. However, the deployment of AVs introduces new liability challenges when they are involved in car accidents. A new legal framework should be developed to tackle such a challenge. This paper proposes a legal framework, incorporating liability rules to rear-end crashes in mixed-traffic platoons with AVs and human-propelled vehicles (HV). We leverage a matrix game approach to understand interactions among players whose utility captures crash loss for drivers according to liability rules. We investigate how liability rules may impact the game equilibrium between vehicles and whether human drivers’ moral hazards arise if liability is not designed properly. We find that compared to the no-fault liability rule, contributory and comparative rules make road users have incentives to execute a smaller reaction time to improve road safety. There exists moral hazards for human drivers when risk-averse AV players are in the car platoon. 
    more » « less
  2. Understanding the intention of vehicles in the surrounding traffic is crucial for an autonomous vehicle to successfully accomplish its driving tasks in complex traffic scenarios such as highway forced merging. In this paper, we consider a behavioral model that incorporates both social behaviors and personal objectives of the interacting drivers. Leveraging this model, we develop a receding-horizon control-based decision-making strategy, that estimates online the other drivers' intentions using Bayesian filtering and incorporates predictions of nearby vehicles' behaviors under uncertain intentions. The effectiveness of the proposed decision-making strategy is demonstrated and evaluated based on simulation studies in comparison with a game theoretic controller and a real-world traffic dataset. 
    more » « less
  3. Connected and Autonomous Vehicles (CAVs) have the potential to revolutionize transportation by addressing critical challenges such as safety, energy efficiency, traffic congestion, and environmental impact. Realizing these benefits, however, requires the development of a rigorous testing and verification framework to enable the safe, efficient, and reliable deployment of CAVs across diverse operational scenarios. Despite the growing body of research, there remains a significant gap in review papers that comprehensively summarize recent studies related to the testing and verification of CAVs while identifying current challenges and highlighting future research directions. This paper seeks to address this gap by presenting a comprehensive review of the existing testing and verification frameworks for CAVs and identifying their associated challenges. Key topics covered include scenario generation, verification cost functions, assertion values, and security considerations. Furthermore, the paper highlights limitations within current frameworks, emphasizing the gaps that hinder systematic and comprehensive evaluations. 
    more » « less
  4. With the advances in autonomous vehicles and intelligent intersection management systems, traffic lights may be replaced by optimal travel plans calculated for each passing vehicle in the future. While these technological advancements are envisioned to greatly improve travel efficiency, they are still facing various challenging security hurdles since even a single deviation of a vehicle from its assigned travel plan could cause a serious accident if the surrounding vehicles do not take necessary actions in a timely manner. In this paper, we propose a novel security mechanism namely NWADE which can be integrated into existing autonomous intersection management systems to help detect malicious vehicle behavior and generate evacuation plans. In the NWADE mechanism, we introduce the neighborhood watch concept whereby each vehicle around the intersection will serve as a watcher to report or verify the abnormal behavior of any nearby vehicle and the intersection manager. We propose a blockchainbased verification framework to guarantee the integrity and trustworthiness of the individual travel plans optimized for the entire intersection. We have conducted extensive experimental studies on various traffic scenarios, and the experimental results demonstrate the practicality, effectiveness, and efficiency of our mechanism. 
    more » « less
  5. Traffic intersections are the most suitable locations for the deployment of computing, communications, and intelligence services for smart cities of the future. The abundance of data to be collected and processed, in combination with privacy and security concerns, motivates the use of the edgecomputing paradigm which aligns well with physical intersections in metropolises. This paper focuses on high-bandwidth, lowlatency applications, and in that context it describes: (i) system design considerations for smart city intersection intelligence nodes; (ii) key technological components including sensors, networking, edge computing, low latency design, and AI-based intelligence; and (iii) applications such as privacy preservation, cloud-connected vehicles, a real-time ”radar-screen”, traffic management, and monitoring of pedestrian behavior during pandemics. The results of the experimental studies performed on the COSMOS testbed located in New York City are illustrated. Future challenges in designing human-centered smart city intersections are summarized. 
    more » « less