Despite their versatile synthetic utility, vinyl azides have complex and poorly understood photochemistry. To address this, we investigated the photoreactivity of 1-azidostyrene 1 and 3-phenyl-2H-azirine 2 in solution and cryogenic matrices. In argon matrices, irradiation of 1 at 254 nm yielded 2, phenyl nitrile ylide 3, and N-phenyl ketenimine 4, whereas irradiation at wavelengths above 300 nm produced only 2 and 4. Similarly, irradiation of 1 in 2-methyltetrahydrofuran (mTHF) glass at 77 K mainly yielded absorption corresponding to the formation of 2 (λmax ~ 252 nm). In contrast, irradiation of 2 at wavelengths above 300 nm in Argon matrices yielded no photoproducts, whereas irradiation at 254 nm resulted in the formation of 3. Furthermore, femto- and nanosecond transient absorption and laser flash photolysis were performed to ascertain the transient species and reactive intermediates formed during the photochemical transformations of 1 and 2. The ultrafast transient absorption spectroscopy of 1 resulted in a transient absorption band centered at ca. 472 nm with a time constant τ ~ 22 ps, which was assigned to the first singlet excited state (S1) of 1. The nano-second flash photolysis of 1 (308 nm laser) generated 2 within the laser pulse (~17 ns), and subsequently 2 is excited to yield triplet vinylnitrene 31N with an absorption centered at ~ 440 nm. In contrast, the nano-second laser flash photolysis of 2 with 266 nm laser produced a weak absorption corresponding to 3, whereas 308 nm laser yielded absorption due to triplet vinylnitrene 31N (λmax ~ 440 nm). These findings demonstrate that the direct irradiation of 1 populates S1 of 1, which does not intersystem cross to form 31N, but instead decays to yield 2. Density functional theory calculations supported the characteristics of the excited states and reactive intermediates formed upon irradiation of 1 and 2.
more »
« less
Unraveling the Solid-State Photoreactivity of Carbonylbis(4,1-Phenylene)dicarbonazidate with Laser Flash Photolysis
Solid-state photoreactions are generally controlled by the rigid and ordered nature of crystals. Herein, the solution and solid-state photoreactivities of carbonylbis(4,1-phenylene)dicarbonazidate (1) were investigated to elucidate the solid-state reaction mechanism. Irradiation of 1 in methanol yielded primarily the corresponding amine, whereas irradiation in the solid state gave a mixture of photoproducts. Laser flash photolysis in methanol showed the formation of the triplet ketone (TK) of 1 (τ ∼ 99 ns), which decayed to triplet nitrene 31N (τ ∼ 464 ns), as assigned by comparison to its calculated spectrum. Laser flash photolysis of a nanocrystalline suspension and diffuse reflectance laser flash photolysis also revealed the formation of TK of 1 (τ ∼ 106 ns) and 31N (τ ∼ 806 ns). Electron spin resonance spectroscopy and phosphorescence measurements further verified the formation of 31N and the TK of 1, respectively. In methanol, 31N decays by H atom abstraction. However, in the solid state, 31N is sufficiently long lived to thermally populate its singlet configuration (11N). Insertion of 11N into the phenyl ring to produce oxazolone competes with 31N cleavage to form a radical pair. Notably, 1 did not exhibit photodynamic behavior, likely because the photoreaction occurs only on the crystal surfaces.
more »
« less
- Award ID(s):
- 2102248
- PAR ID:
- 10476801
- Publisher / Repository:
- ACS
- Date Published:
- Journal Name:
- The Journal of Physical Chemistry A
- Volume:
- 127
- Issue:
- 46
- ISSN:
- 1089-5639
- Page Range / eLocation ID:
- 9705 to 9716
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Photoenols, formed through photoinduced intra-molecular H atom abstraction in o-alkyl-substituted arylketones,typically have limited utility as reactive intermediates owing to fastreversion to the starting material. Herein, we introduced an azidogroup on the o-alkyl substituent to render the photoreactionirreversible. Irradiation of 2-azidomethylbenzophenone (1) inmethanol yielded 2-(hydroxy(phenyl)methyl)benzonitrile (2). Laser flash photolysis of 1 revealed the formation of biradical 3Br1followed by intersystem crossing to photoenols Z-3 (τ ∼ 3.3 μs) and E-3 (τ > 45 μs), both of which reverted to 1. Alternatively, 3Br1could lose N2 to form 3Br2 (not detected), which decays to 2. In cryogenic argon matrices, irradiation of 1 yielded nitrene 31N and 2but no photoenols, likely because Z-3 regenerated 1. Both ESR spectroscopy and absorption analysis in methyltetrahydrofuran (80K) confirmed 31N formation. Upon prolonged irradiation, the absorbance of 31N decreased, whereas that of 3 remained unchangedand that of 2 increased. Thus, TK of 1 is proposed to form 3Br1 via H atom abstraction, with subsequent intersystem crossing to 3competing with the loss of N2 to generate 3Br2. DFT calculations revealed a small energy gap (∼2 kcal/mol) between the triplet andsinglet configurations of Br2, supporting a mechanism in which 3Br2 intersystem crosses to yield 2more » « less
-
ABSTRACT Triplet arylnitrenes may provide direct access to aryl azo‐dimers, which have broad commercial applicability. Herein, the photolysis ofp‐azidostilbene (1) in argon‐saturated methanol yielded stilbene azo‐dimer (2) through the dimerization of tripletp‐nitrenostilbene (31N). The formation of31Nwas verified by electron paramagnetic resonance spectroscopy and absorption spectroscopy (λmax ~ 375 nm) in cryogenic 2‐methyltetrahydrofuran matrices. At ambient temperature, laser flash photolysis of1in methanol formed31N(λmax ~ 370 nm, 2.85 × 107 s−1). On shorter timescales, a transient absorption (λmax ~ 390 nm) that decayed with a similar rate constant (3.11 × 107 s−1) was assigned to a triplet excited state (T) of1. Density functional theory calculations yielded three configurations for T of1, with the unpaired electrons on the azido (TA) or stilbene moiety (TTw, twisted and TFl, flat). The transient was assigned to TTwbased on its calculated spectrum. CASPT2 calculations gave a singlet–triplet energy gap of 16.6 kcal mol−1for1 N; thus, intersystem crossing of11Nto31Nis unlikely at ambient temperature, supporting the formation of31Nfrom T of1. Thus, sustainable synthetic methods for aryl azo‐dimers can be developed using the visible‐light irradiation of aryl azides to form triplet arylnitrenes.more » « less
-
NA (Ed.)Highly reactive arylalkylcarbenes generated in solution by photolysis of their aryldiazoalkane precursors tend to undergo competing inter- and intramolecular reactions to yield a complex mixture of products. Having previously shown the use of crystals to effectively control the reactivity of arylalkylcarbenes to afford high yields of a single product, it was of interest to investigate whether the crystalline environment could also enable spectroscopic detection of these intermediates en route to photoproduct. Using 1,2,2-triphenyldiazoethane (3) as a model substrate to probe the effect of alternative reaction trajectories that yield triphenylethylene (5) by competing 1,2-H shift or 1,2-Ph migration, we report selectivities consistent with reaction from a spin-equilibrated carbene 4 in solution, while reactions in crystals primarily afford alkene 5 via a lattice-controlled 1,2-H shift. Attempts to detect 1,2,2-triphenylethylidene 4 in crystals by nanosecond laser flash photolysis or by triplet-triplet fluorescence at 77 K were unsuccessful, indicating that arylalkylcarbenes possessing α-H substituents undergo facile 1,2-H shifts both in solution and in the solid state. However, related tert-butylphenylmethylene with no α-H substituents could be observed by triplet-triplet fluorescence at 77 K in glassy matrices.more » « less
-
The nitrate anion (NO3−) is abundant in environmental aqueous phases, including aerosols, surface waters, and snow, where its photolysis releases nitrogen oxides back into the atmosphere. Nitrate photolysis occurs via two channels: (1) the formation of NO2 and O− and (2) the formation of NO2− and O(3P). The occurrence of two reaction channels with very low quantum yield (∼1%) highlights the critical role of the solvation environment and spin-forbidden electronic transitions, which remain unexplained at the molecular level. We investigate the two photolysis channels in water using quantum chemical calculations and first-principles molecular dynamics simulations with hybrid density functional theory and enhanced sampling. We find that spin-forbidden absorption to the triplet state (T1) is possible but occurs at a rate ∼15 times weaker than the spin-allowed transition to the singlet state (S1). A metastable solvation cage complex requires additional thermal energy to dissociate the N–O bond, allowing for recombination or non-radiative deactivation. Our results explain the temperature dependence of photolysis, linked to hydrogen bond rearrangement in the solvation shell. This work provides new molecular insights into nitrate photolysis and its low quantum yield under environmental conditions.more » « less
An official website of the United States government

