skip to main content


This content will become publicly available on November 8, 2024

Title: Unraveling the Solid-State Photoreactivity of Carbonylbis(4,1-Phenylene)dicarbonazidate with Laser Flash Photolysis
Solid-state photoreactions are generally controlled by the rigid and ordered nature of crystals. Herein, the solution and solid-state photoreactivities of carbonylbis(4,1-phenylene)dicarbonazidate (1) were investigated to elucidate the solid-state reaction mechanism. Irradiation of 1 in methanol yielded primarily the corresponding amine, whereas irradiation in the solid state gave a mixture of photoproducts. Laser flash photolysis in methanol showed the formation of the triplet ketone (TK) of 1 (τ ∼ 99 ns), which decayed to triplet nitrene 31N (τ ∼ 464 ns), as assigned by comparison to its calculated spectrum. Laser flash photolysis of a nanocrystalline suspension and diffuse reflectance laser flash photolysis also revealed the formation of TK of 1 (τ ∼ 106 ns) and 31N (τ ∼ 806 ns). Electron spin resonance spectroscopy and phosphorescence measurements further verified the formation of 31N and the TK of 1, respectively. In methanol, 31N decays by H atom abstraction. However, in the solid state, 31N is sufficiently long lived to thermally populate its singlet configuration (11N). Insertion of 11N into the phenyl ring to produce oxazolone competes with 31N cleavage to form a radical pair. Notably, 1 did not exhibit photodynamic behavior, likely because the photoreaction occurs only on the crystal surfaces.  more » « less
Award ID(s):
2102248
NSF-PAR ID:
10476801
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
ACS
Date Published:
Journal Name:
The Journal of Physical Chemistry A
Volume:
127
Issue:
46
ISSN:
1089-5639
Page Range / eLocation ID:
9705 to 9716
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Triplet arylnitrenes may provide direct access to aryl azo‐dimers, which have broad commercial applicability. Herein, the photolysis ofp‐azidostilbene (1) in argon‐saturated methanol yielded stilbene azo‐dimer (2) through the dimerization of tripletp‐nitrenostilbene (31N). The formation of31Nwas verified by electron paramagnetic resonance spectroscopy and absorption spectroscopy (λmax ~ 375 nm) in cryogenic 2‐methyltetrahydrofuran matrices. At ambient temperature, laser flash photolysis of1in methanol formed31N(λmax ~ 370 nm, 2.85 × 107 s−1). On shorter timescales, a transient absorption (λmax ~ 390 nm) that decayed with a similar rate constant (3.11 × 107 s−1) was assigned to a triplet excited state (T) of1. Density functional theory calculations yielded three configurations for T of1, with the unpaired electrons on the azido (TA) or stilbene moiety (TTw, twisted and TFl, flat). The transient was assigned to TTwbased on its calculated spectrum. CASPT2 calculations gave a singlet–triplet energy gap of 16.6 kcal mol−1for1 N; thus, intersystem crossing of11Nto31Nis unlikely at ambient temperature, supporting the formation of31Nfrom T of1. Thus, sustainable synthetic methods for aryl azo‐dimers can be developed using the visible‐light irradiation of aryl azides to form triplet arylnitrenes.

     
    more » « less
  2. null (Ed.)
    The oxidation of highly toxic arsenite (As(III)) was studied using humic acid-coated magnetite nanoparticles (HA-MNP) as a photosensitizer. Detailed characterization of the HA-MNP was carried out before and after the photoinduced treatment of As(III) species. Upon irradiation of HA-MNP with 350 nm light, a portion of the As(III) species was oxidized to arsenate (As(V)) and was nearly quantitatively removed from the aqueous solution. The separation of As(III) from the aqueous solution is primarily driven by the strong adsorption of As(III) onto the HA-MNP. As(III) removals of 40–90% were achieved within 60 min depending on the amount of HA-MNP. The generation of reactive oxygen species (•OH and 1O2) and the triplet excited state of HA-MNP (3HA-MNP*) was monitored and quantified during HA-MNP photolysis. The results indicate 3HA-MNP* and/or singlet oxygen (1O2) depending on the reaction conditions are responsible for converting As(III) to less toxic As(V). The formation of 3HA-MNP* was quantified using the electron transfer probe 2,4,6-trimethylphenol (TMP). The formation rate of 3HA-MNP* was 8.0 ± 0.6 × 10−9 M s−1 at the TMP concentration of 50 µM and HA-MNP concentration of 1.0 g L−1. The easy preparation, capacity for triplet excited state and singlet oxygen production, and magnetic separation suggest HA-MNP has potential to be a photosensitizer for the remediation of arsenic (As) and other pollutants susceptible to advanced oxidation. 
    more » « less
  3. This chapter describes how intramolecular sensitization has been used to successfully form triplet vinylnitrene intermediates from vinyl azide, isoxazole, and azirine compounds. Triplet vinylnitrenes have been thoroughly characterized in cryogenic matrices using UV/vis absorption, infrared, and electron spin resonance spectroscopies. Electron spin resonance spectroscopy shows that vinylnitrenes have a significant 1,3‐biradical character, which is further supported by density functional theory calculations. Laser flash photolysis, which has allowed the direct detection of triplet vinylnitrenes in solution, reveals that they are short‐lived intermediates with lifetimes on the order of a few microseconds. Vinylnitrenes decay efficiently by intersystem crossing to form products because their 1,3‐biradical character renders their vinylic CC bond flexible, which enhances intersystem crossing. At cryogenic temperatures, flexible triplet vinylnitrenes are not stable and intersystem cross to form products. Nevertheless, triplet vinylnitrenes can be stabilized by limiting the flexibility of the vinylic CC bond, which renders them stabile in cryogenic matrices. Thus, they are promising building blocks for high‐spin assemblies. Furthermore, as stabilized vinylnitrenes can also be employed in bimolecular reactions, they have potential for use in various synthetical applications. 
    more » « less
  4. Abstract

    We report the synthesis and photophysical characterization of novel halogenated dipyrrolonaphthyridine‐diones (X2–DPNDs, X = Cl, Br, and I), as candidates for photodynamic therapy (PDT) application. Apart from the heavy atom‐induced spin‐orbit coupling (SOC) dynamics in the investigated X2–DPNDs, it was found that the position of the halogen atom (relative to the nitrogen of the pyrrole ring) also influenced the triplet excited state behavior. Interestingly, the faster/efficiency sensitization of3O2to1O2using X2–DPND correlates with the rate of triplet population,kISC >1.6 × 108s−1for I2–DPNDvs kISC >2.9 × 109s−1for Cl2–DPND and Br2–DPND (whereτISC = 343 ± 3 ps for I2–DPND andτISC = 5–6 ns for Cl2–DPND and Br2–DPND are the lowest time constants/values for ISC). Furthermore, the heavy atom‐induced SOC in Cl2–DPND and Br2–DPND did not lead to a reduction of the corresponding fluorescence (ca75%vs67% for the parent DPND). The attractive photophysical characteristics of Cl2/Br2–DPND put them on the landscape as not only promising PDT agents but also as fluorescence probes. The present study is a stepping stone in the development of novel organic photosystems for synergistic photomedicinal applications.

     
    more » « less
  5. Laser-induced fluorescence (LIF) excitation, dispersed fluorescence (DFL), UV–UV-hole burning, and UV-depletion spectra have been collected on methyl anthranilate (MA, methyl 2-aminobenzoate) and its water-containing complex (MA–H 2 O), under jet-cooled conditions in the gas phase. As a close structural analog of a sunscreen agent, MA has a strong absorption due to the S 0 –S 1 transition that begins in the UV-A region, with the electronic origin at 28 852 cm −1 (346.6 nm). Unlike most sunscreens that have fast non-radiative pathways back to the ground state, MA fluoresces efficiently, with an excited state lifetime of 27 ns. Relative to methyl benzoate, inter-system crossing to the triplet manifold is shut off in MA by the strong intramolecular NH⋯OC H-bond, which shifts the 3 nπ* state well above the 1 ππ* S 1 state. Single vibronic level DFL spectra are used to obtain a near-complete assignment of the vibronic structure in the excited state. Much of the vibrational structure in the excitation spectrum is Franck–Condon activity due to three in-plane vibrations that modulate the distance between the NH 2 and CO 2 Me groups, ν 33 (421 cm −1 ), ν 34 (366 cm −1 ), and ν 36 (179 cm −1 ). Based on the close correspondence between experiment and theory at the TD-DFT B3LYP-D3BJ/def2TZVP level of theory, the major structural changes associated with electronic excitation are evaluated, leading to the conclusion that the major motion is a reorientation and constriction of the 6-membered H-bonded ring closed by the intramolecular NH⋯OC H-bond. This leads to a shortening of the NH⋯OC H-bond distance from 1.926 Å to 1.723 Å, equivalent to about a 25% reduction in the H⋯O distance compared to full H-atom transfer. As a result, the excited state process near the S 1 origin is a hydrogen atom dislocation that is brought about primarily by heavy atom motion, since the shortened H-bond distance results from extensive heavy-atom motion, with only a 0.03 Å increase in the NH bond length relative to its ground state value. 
    more » « less