skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gill grooming in middle Cambrian and Late Ordovician trilobites
Abstract Efficient extraction of oxygen from ambient waters played a critical role in the development of early arthropods. Maximizing gill surface area enhanced oxygen uptake ability but, with gills necessarily exposed to the external environment, also presented the issue of gill contamination. Here we document setae inserted on the dorsal surface of walking legs of the benthic-dwelling middle CambrianOlenoides serratusand on the gill shaft of the Late OrdovicianTriarthrus eatoni. Based on their physical positions relative to gill filaments, we interpret these setae to have been used to groom the gills, removing particles trapped among the filaments. The coordination between setae and gill filaments is comparable to that seen among modern crustaceans, which use a diverse set of setae-bearing appendages to penetrate between gill filaments when grooming. Grooming is known relatively early in trilobite evolutionary history and would have enhanced gill efficiency by maximizing the surface area for oxygen uptake.  more » « less
Award ID(s):
1850005
PAR ID:
10476853
Author(s) / Creator(s):
; ;
Publisher / Repository:
cambridge
Date Published:
Journal Name:
Geological Magazine
Volume:
160
Issue:
5
ISSN:
0016-7568
Page Range / eLocation ID:
905 to 910
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Life history theory suggests that maximum size and growth evolve to maximize fitness. In contrast, the Gill Oxygen Limitation Theory (GOLT) suggests that growth and maximum size in fishes and other aquatic, water‐breathing organisms is constrained by the body mass‐scaling of gill surface area. Here, we use new data and a novel phylogenetic Bayesian multilevel modelling framework to test this idea by asking the three questions posed by the GOLT regarding maximum size, growth and gills. Across fishes, we ask whether the body mass‐scaling of gill surface area explains (1) variation in the von Bertalanffy growth coefficient (k) above and beyond that explained by asymptomatic size (W), (2) variation in growth performance (a trait that integrates the tradeoff betweenkandW) and (3) more variation in growth performance compared to activity (as approximated by caudal fin aspect ratio). Overall, we find that there is only a weak relationship among maximum size, growth and gill surface area across species. Indeed, the body mass‐scaling of gill surface area does not explain much variation ink(especially for those species that reach the sameW) or growth performance. Activity explained three to five times more variation in growth performance compared to gill surface area. Our results suggest that in fishes, gill surface area is not the only factor that explains variation in maximum size and growth, and that other covariates (e.g. activity) are likely important in understanding how growth, maximum size and other life history traits vary across species. 
    more » « less
  2. ABSTRACT The gill is the primary site of ionoregulation and gas exchange in adult teleost fishes. However, those characteristics that benefit diffusive gas exchange (large, thin gills) may also enhance the passive equilibration of ions and water that threaten osmotic homeostasis. Our literature review revealed that gill surface area and thickness were similar in freshwater (FW) and seawater (SW) species; however, the diffusive oxygen (O2) conductance (Gd) of the gill was lower in FW species. While a lower Gd may reduce ion losses, it also limits O2 uptake capacity and possibly aerobic performance in situations of high O2 demand (e.g. exercise) or low O2 availability (e.g. environmental hypoxia). We also found that FW fishes had significantly higher haemoglobin (Hb)–O2 binding affinities than SW species, which will increase the O2 diffusion gradient across the gills. Therefore, we hypothesized that the higher Hb–O2 affinity of FW fishes compensates, in part, for their lower Gd. Using a combined literature review and modelling approach, our results show that a higher Hb–O2 affinity in FW fishes increases the flux of O2 across their low-Gd gills. In addition, FW and SW teleosts can achieve similar maximal rates of O2 consumption (ṀO2,max) and hypoxia tolerance (Pcrit) through different combinations of Hb–O2 affinity and Gd. Our combined data identified novel patterns in gill and Hb characteristics between FW and SW fishes and our modelling approach provides mechanistic insight into the relationship between aerobic performance and species distribution ranges, generating novel hypotheses at the intersection of cardiorespiratory and ionoregulatory fish physiology. 
    more » « less
  3. ABSTRACT The gill surface area of aquatic ectotherms is thought to be closely linked to the ontogenetic scaling of metabolic rate, a relationship that is often used to explain and predict ecological patterns across species. However, there are surprisingly few within-species tests of whether metabolic rate and gill area scale similarly. We examined the relationship between oxygen supply (gill area) and demand (metabolic rate) by making paired estimates of gill area with resting and maximum metabolic rates across ontogeny in the relatively inactive California horn shark, Heterodontus francisci. We found that the allometric slope of resting metabolic rate was 0.966±0.058 (±95% CI), whereas that of maximum metabolic rate was somewhat steeper (1.073±0.040). We also discovered that the scaling of gill area shifted with ontogeny: the allometric slope of gill area was shallower in individuals <0.203 kg in body mass (0.564±0.261), but increased to 1.012±0.113 later in life. This appears to reflect changes in demand for gill-oxygen uptake during egg case development and immediately post hatch, whereas for most of ontogeny, gill area scales in between that of resting and maximum metabolic rate. These relationships differ from predictions of the gill oxygen limitation theory, which argues that the allometric scaling of gill area constrains metabolic processes. Thus, for the California horn shark, metabolic rate does not appear limited by theoretical surface-area-to-volume ratio constraints of gill area. These results highlight the importance of data from paired and size-matched individuals when comparing physiological scaling relationships. 
    more » « less
  4. Metabolic morphology—the morphological features related to metabolic rate—offers broad comparative insights into the physiological performance and ecological function of species. However, some metabolic morphological traits, such as gill surface area, require costly and lethal sampling. Measurements of gill slit height from anatomically accurate drawings, such as those in field guides, offer the opportunity to understand physiological and ecological function without the need for lethal sampling. Here, we examine the relationship between gill slit height and each of the three traits that comprise ecological lifestyle: activity, maximum body size, and depth across nearly all sharks (n= 455). We find that gill slit heights are positively related to activity (measured by the aspect ratio of the caudal fin) and maximum size but negatively related to depth. Overall, gill slit height is best explained by the suite of ecological lifestyle traits rather than any single trait. These results suggest that more active, larger and shallower species (and endothermic species) have higher metabolic throughput as indexed by gill slit height (oxygen uptake) and ecological lifestyle (oxygen expenditure). We show that meaningful ecophysiological relationships can be revealed through measurable metabolic morphological traits from anatomically accurate drawings, which offers the opportunity to estimate class-wide traits for analyses of life history theory and the relationship between biodiversity and ecological function. 
    more » « less
  5. In hypoxia, air-breathing fish obtain O2from the air but continue to excrete CO2into the water. Consequently, it is believed that some O2obtained by air-breathing is lost at the gills in hypoxic water.Pangasionodon hypophthalmusis an air-breathing catfish with very large gills from the Mekong River basin where it is cultured in hypoxic ponds. To understand howP. hypophthalmuscan maintain high growth in hypoxia with the presumed O2loss, we quantified respiratory gas exchange in air and water. In severe hypoxia (PO2: ≈ 1.5 mmHg), it lost a mere 4.9% of its aerial O2uptake, while maintaining aquatic CO2excretion at 91% of the total. Further, even small elevations in water PO2rapidly reduced this minor loss. Charting the cardiovascular bauplan across the branchial basket showed four ventral aortas leaving the bulbus arteriosus, with the first and second gill arches draining into the dorsal aorta while the third and fourth gill arches drain into the coeliacomesenteric artery supplying the gut and the highly trabeculated respiratory swim-bladder. Substantial flow changes across these two arterial systems from normoxic to hypoxic water were not found. We conclude that the proposed branchial oxygen loss in air-breathing fish is likely only a minor inefficiency. 
    more » « less