skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Complex Materials with Stochastic Structural Patterns: Spiky Colloids with Enhanced Charge Storage Capacity
Abstract Self‐assembled materials with complex nanoscale and mesoscale architecture attract considerable attention in energy and sustainability technologies. Their high performance can be attributed to high surface area, quantum effects, and hierarchical organization. Delineation of these contributions is, however, difficult because complex materials display stochastic structural patterns combining both order and disorder, which is difficult to be consistently reproduced yet being important for materials' functionality. Their compositional variability make systematic studies even harder. Here, a model system of FeSe2“hedgehog” particles (HPs) was selected  to gain insight into the mechanisms of charge storage n complex nanostructured materials common for batteries and supercapacitors. Specifically, HPs represent self‐assembled biomimetic nanomaterials with a medium level of complexity; they display an organizational pattern of spiky colloids with considerable disorder yet non‐random; this patternt is consistently reproduced from particle to particle. . It was found that HPs can accommodate ≈70× greater charge density than spheroidal nano‐ and microparticles. Besides expanded surface area, the enhanced charge storage capacity was enabled by improved hole transport and reversible atomic conformations of FeSe2layers in the blade‐like spikes associated with the rotatory motion of the Se atoms around Fe center. The dispersibility of HPs also enables their easy integration into energy storage devices. HPs quadruple stored electrochemical energy and double the storage modulus of structural supercapacitors.  more » « less
Award ID(s):
2243104
PAR ID:
10477157
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Science
Volume:
11
Issue:
4
ISSN:
2198-3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A local electric field is induced to engineer the interface of vanadium pentoxide nanofibers (V2O5‐NF) to manipulate the charge transport behavior and obtain high‐energy and durable supercapacitors. The interface of V2O5‐NF is modified with oxygen vacancies (Vö) in a one‐step polymerization process of polyaniline (PANI). In the charge storage process, the local electric field deriving from the lopsided charge distribution around Vö will provide Coulombic forces to promote the charge transport in the resultant Vö‐V2O5/PANI nanocable electrode. Furthermore, an ≈7 nm porous PANI coating serves as the external percolated charge transport pathway. As the charge transfer kinetics are synergistically enhanced by the dual modifications, Vö‐V2O5/PANI‐based supercapacitors exhibit an excellent specific capacitance (523 F g−1) as well as a long cycling lifespan (110% of capacitance remained after 20 000 cycles). This work paves an effective way to promote the charge transfer kinetics of electrode materials for next‐generation energy storage systems. 
    more » « less
  2. Abstract Vertically oriented graphene (VG) nanosheets exhibit unique structural characteristics, such as large accessible surface area, rich edges, high electrical conductivity, open network channels, and agglomeration resistance, for electrochemical energy‐storage applications (e. g., supercapacitors, lithium‐ion batteries, etc.). In this Review article, we summarize recent progress in the design and engineering of VG‐based electrodes for high‐performance electrochemical energy technologies within the context of energy‐storage mechanisms and charge‐transfer kinetics, and include a perspective to highlight the challenges and promises in the exploitation of vertically oriented two‐dimensional carbon nanostructures for further enhancement of the performance of electrochemical energy‐storage devices. 
    more » « less
  3. Abstract For the sustainable growth of future generations, energy storage technologies like supercapacitors and batteries are becoming more and more common. However, reliable and high‐performance materials’ design and development is the key for the widespread adoption of batteries and supercapacitors. Quantum dots with fascinating and unusual properties are expected to revolutionize future technologies. However, while the recent discovery of quantum dots honored with a Nobel prize in Chemistry, their benefits for the tenacious problem of energy are not realized yet. In this context, herein, chemical‐composition tuning enabled exceptional performance of NiCo2O4(NCO)/graphene quantum dots (GQDs) is reported, which outperform the existing similar materials, in supercapacitors. A comprehensive study is performed on the synthesis, characterization, and electrochemical performance evaluation of highly functional NCO/GQDs in supercapacitors delivering enhanced energy efficiency. The high‐performance, functional NCO/GQDs electrode materials are synthesized by the incorporation of GQDs into NCO. The effect of variable amount of GQDs on the energy performance characteristics of NCO/GQDs in supercapacitors is studied systematically. In‐depth structural and chemical bonding analyses using X‐ray diffraction (XRD) and Raman spectroscopic studies indicate that all the NCO/GQDs composites crystallize in the spinel cubic phase of NiCo2O4while graphene integration evident in all the NCO/GQDs. The scanning electron microscopy imaging analysis reveals homogeneously distributed spherical particles with a size distribution of 5–9 nm validating the formation of QDs. The high‐resolution transmission electron microscopy analyses reveal that the NCOQDs are anchored on graphene sheets, which provide a high surface area of 42.27 m2g−1and high mesoporosity for the composition of NCO/GQDs‐10%. In addition to establishing reliable electrical connection to graphene sheets, the NCOQDs provide reliable 3D‐conductive channels for rapid transport throughout the electrode as well as synergistic effects. Chemical‐composition tuning, and optimization yields NCO/GQDs‐10% to deliver the best specific capacitance of 3940 Fg−1at 0.5 Ag−1, where the electrodes retain ≈98% capacitance after 5000 cycles. The NCO/GQD‐10%//AC asymmetric supercapacitor device demonstrates outstanding energy density and power density values of 118.04 Wh kg−1and 798.76 W kg−1, respectively. The NCO/GQDs‐10%//NCO/GQDs‐10% symmetric supercapacitor device delivers excellent energy and power density of 24.30 Wh kg−1and 500 W kg−1, respectively. These results demonstrate and conclude that NCO/GQDs are exceptional and prospective candidates for developing next‐generation high‐performance and sustainable energy storage devices. 
    more » « less
  4. Abstract Inorganic particles are effective photocatalysts for the liquid-state production of organic precursors and monomers at ambient conditions. However, poor colloidal stability of inorganic micro- and nanoparticles in low-polarity solvents limits their utilization as heterogeneous catalysts and coating them with surfactants drastically reduces their catalytic activity. Here we show that effective photo-oxidation of liquid cyclohexane (CH) is possible using spiky particles from metal oxides with hierarchical structure combining micro- and nanoscale structural features engineered for enhanced dispersibility in CH. Nanoscale ZnO spikes are assembled radially on α-Fe2O3microcube cores to produce complex ‘hedgehog’ particles (HPs). The ‘halo’ of stiff spikes reduces van der Waals attraction, preventing aggregation of the catalytic particles. Photocatalysis in Pickering emulsions formed by HPs with hydrogen peroxide provides a viable pathway to energy-efficient alkane oxidation in the liquid state. Additionally, HPs enable a direct chemical pathway from alkanes to epoxides at ambient conditions, specifically to cyclohexene oxide, indicating that the structure of HPs has a direct effect on the recombination of ion-radicals during the hydrocarbon oxidation. These findings demonstrate the potential of inorganic photocatalysts with complex architecture for ‘green’ catalysis. 
    more » « less
  5. Supercapacitors and batteries are essential for sustainable energy development. However, the bottleneck is the associated high cost, which limits bulk use of batteries and supercapacitors. In this context, realizing that the cost of energy‐storage device mainly depends on materials, synthesis processes/procedures, and device fabrication, an effort is made to rationally design and develop novel low‐cost electrode materials with enhanced electrochemical performance in asymmetric supercapacitors. Herein, surface functionalization approach is adopted to design low‐cost 3D mesoporous and nanostructured nickel–nickel oxide electrode materials using facile synthesis for application in supercapacitors. It is demonstrated that the 3D mesoporous Ni provides the high surface area and enhanced ionic conductivity, while germanium functionalization improves the electrical conductivity and reduces the charge‐transfer resistance of NiO. Surface functionalization with Ge demonstrates the significant improvement in specific capacitance of NiO. The asymmetric supercapacitor using these Ge‐functionalized NiO–Ni electrodes provides a specific capacitance of 304 Fg−1(94 mF cm−2), energy density of 23.8 Wh kg−1(7.35 μWh cm−2), and power density of 6.8 kW kg−1(2.1 mW cm−2) with excellent cyclic stability of 92% after 10 000 cycles. To validate their practical applications, powering the digital watch using the asymmetric supercapacitors in laboratory conditions is demonstrated. 
    more » « less