BackgroundFrequent sensor-assisted monitoring of changes in swallowing function may help improve detection of radiation-associated dysphagia before it becomes permanent. While our group has prototyped an epidermal strain/surface electromyography sensor that can detect minute changes in swallowing muscle movement, it is unknown whether patients with head and neck cancer would be willing to wear such a device at home after radiation for several months. ObjectiveWe iteratively assessed patients’ design preferences and perceived barriers to long-term use of the prototype sensor. MethodsIn study 1 (questionnaire only), survivors of pharyngeal cancer who were 3-5 years post treatment and part of a larger prospective study were asked their design preferences for a hypothetical throat sensor and rated their willingness to use the sensor at home during the first year after radiation. In studies 2 and 3 (iterative user testing), patients with and survivors of head and neck cancer attending visits at MD Anderson’s Head and Neck Cancer Center were recruited for two rounds of on-throat testing with prototype sensors while completing a series of swallowing tasks. Afterward, participants were asked about their willingness to use the sensor during the first year post radiation. In study 2, patients also rated the sensor’s ease of use and comfort, whereas in study 3, preferences were elicited regarding haptic feedback. ResultsThe majority of respondents in study 1 (116/138, 84%) were willing to wear the sensor 9 months after radiation, and participant willingness rates were similar in studies 2 (10/14, 71.4%) and 3 (12/14, 85.7%). The most prevalent reasons for participants’ unwillingness to wear the sensor were 9 months being excessive, unwanted increase in responsibility, and feeling self-conscious. Across all three studies, the sensor’s ability to detect developing dysphagia increased willingness the most compared to its appearance and ability to increase adherence to preventive speech pathology exercises. Direct haptic signaling was also rated highly, especially to indicate correct sensor placement and swallowing exercise performance. ConclusionsPatients and survivors were receptive to the idea of wearing a personalized risk sensor for an extended period during the first year after radiation, although this may have been limited to well-educated non-Hispanic participants. A significant minority of patients expressed concern with various aspects of the sensor’s burden and its appearance. Trial RegistrationClinicalTrials.gov NCT03010150; https://clinicaltrials.gov/study/NCT03010150
more »
« less
Marginal Jobs and Job Surplus: A Test of the Efficiency of Separations
Abstract We present a test of Coasean theories of efficient separations. We study a cohort of jobs from the introduction through the repeal of a large age- and region-specific unemployment benefit extension in Austria. In the treatment group, 18.5$$\%$$ fewer jobs survive the program period. According to the Coasean view, the destroyed marginal jobs had low joint surplus. Hence, after the repeal, the treatment survivors should be more resilient than the ineligible control group survivors. Strikingly, the two groups instead exhibit identical post-repeal separation behaviour. We provide, and find suggestive evidence consistent with, an alternative model in which wage rigidity drives the inefficient separation dynamics.
more »
« less
- Award ID(s):
- 1851926
- PAR ID:
- 10477171
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- The Review of Economic Studies
- Volume:
- 90
- Issue:
- 3
- ISSN:
- 0034-6527
- Page Range / eLocation ID:
- 1265 to 1303
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Background: The number of survivors of cancer is growing, and they often experience negative long-term behavioral outcomes due to cancer treatments. There is a need for better computational methods to handle and predict these outcomes so that physicians and health care providers can implement preventive treatments. Objective: This study aimed to create a new feature selection algorithm to improve the performance of machine learning classifiers to predict negative long-term behavioral outcomes in survivors of cancer. Methods: We devised a hybrid deep learning–based feature selection approach to support early detection of negative long-term behavioral outcomes in survivors of cancer. Within a data-driven, clinical domain–guided framework to select the best set of features among cancer treatments, chronic health conditions, and socioenvironmental factors, we developed a 2-stage feature selection algorithm, that is, a multimetric, majority-voting filter and a deep dropout neural network, to dynamically and automatically select the best set of features for each behavioral outcome. We also conducted an experimental case study on existing study data with 102 survivors of acute lymphoblastic leukemia (aged 15-39 years at evaluation and >5 years postcancer diagnosis) who were treated in a public hospital in Hong Kong. Finally, we designed and implemented radial charts to illustrate the significance of the selected features on each behavioral outcome to support clinical professionals’ future treatment and diagnoses. Results: In this pilot study, we demonstrated that our approach outperforms the traditional statistical and computation methods, including linear and nonlinear feature selectors, for the addressed top-priority behavioral outcomes. Our approach holistically has higher F1, precision, and recall scores compared to existing feature selection methods. The models in this study select several significant clinical and socioenvironmental variables as risk factors associated with the development of behavioral problems in young survivors of acute lymphoblastic leukemia. Conclusions: Our novel feature selection algorithm has the potential to improve machine learning classifiers’ capability to predict adverse long-term behavioral outcomes in survivors of cancer.more » « less
-
Summary In some randomized clinical trials, patients may die before the measurement time point of their outcomes. Even though randomization generates comparable treatment and control groups, the remaining survivors often differ significantly in background variables that are prognostic to the outcomes. This is called the truncation by death problem. Under the potential outcomes framework, the only well-defined causal effect on the outcome is within the subgroup of patients who would always survive under both treatment and control. Because the definition of the subgroup depends on the potential values of the survival status that could not be observed jointly, without making strong parametric assumptions, we cannot identify the causal effect of interest and consequently can only obtain bounds of it. Unfortunately, however, many bounds are too wide to be useful. We propose to use detailed survival information before and after the measurement time point of the outcomes to sharpen the bounds of the subgroup causal effect. Because survival times contain useful information about the final outcome, carefully utilizing them could improve statistical inference without imposing strong parametric assumptions. Moreover, we propose to use a copula model to relax the commonly-invoked but often doubtful monotonicity assumption that the treatment extends the survival time for all patients.more » « less
-
Abstract We fully characterize the nonasymptotic minimax separation rate for sparse signal detection in the Gaussian sequence model with $$p$$ equicorrelated observations, generalizing a result of Collier, Comminges and Tsybakov. As a consequence of the rate characterization, we find that strong correlation is a blessing, moderate correlation is a curse and weak correlation is irrelevant. Moreover, the threshold correlation level yielding a blessing exhibits phase transitions at the $$\sqrt{p}$$ and $$p-\sqrt{p}$$ sparsity levels. We also establish the emergence of new phase transitions in the minimax separation rate with a subtle dependence on the correlation level. Additionally, we study group structured correlations and derive the minimax separation rate in a model including multiple random effects. The group structure turns out to fundamentally change the detection problem from the equicorrelated case and different phenomena appear in the separation rate.more » « less
-
Despite intense efforts in basic and clinical research, an individualized ventilation strategy for critically ill patients remains a major challenge. Recently, dynamic treatment regime (DTR) with reinforcement learning (RL) on electronic health records (EHR) has attracted interest from both the healthcare industry and machine learning research community. However, most learned DTR policies might be biased due to the existence of confounders. Although some treatment actions non-survivors received may be helpful, if confounders cause the mortality, the training of RL models guided by long-term outcomes (e.g., 90-day mortality) would punish those treatment actions causing the learned DTR policies to be suboptimal. In this study, we develop a new deconfounding actor-critic network (DAC) to learn optimal DTR policies for patients. To alleviate confounding issues, we incorporate a patient resampling module and a confounding balance module into our actor-critic framework. To avoid punishing the effective treatment actions non-survivors received, we design a short-term reward to capture patients' immediate health state changes. Combining short-term with long-term rewards could further improve the model performance. Moreover, we introduce a policy adaptation method to successfully transfer the learned model to new-source small-scale datasets. The experimental results on one semi-synthetic and two different real-world datasets show the proposed model outperforms the state-of-the-art models. The proposed model provides individualized treatment decisions for mechanical ventilation that could improve patient outcomes.more » « less
An official website of the United States government

