skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Parallel Triangles and Squares Count for Multigraphs Using Vertex Covers
Triangles and squares count are widely-used graph analytic metrics providing insights into the connectivity of a graph. While the literature has focused on algorithms for global counts in simple graphs, this paper presents parallel algorithms for global and per-node triangle and square counts in large multigraphs. The algorithms have linear improvements in computational complexity as the number of cores increases. The triangle count algorithm has the same complexity as the best-known algorithm in the literature. The squares count algorithm has a lower execution time than previous methods. The proposed algorithms are evaluated on six real-world graphs and multigraphs, including protein-protein interaction graphs, knowledge graphs and large web graphs.  more » « less
Award ID(s):
2109988
PAR ID:
10477189
Author(s) / Creator(s):
; ; ;
Editor(s):
Mikyška, J.; de Mulatier, C.; Paszynski, M.; Krzhizhanovskaya, V.V.; Dongarra, J.J.; Sloot, P.M.
Publisher / Repository:
International Conference on Computational Science. ICCS 2023. Springer
Date Published:
Journal Name:
Lecture notes in computer science
Volume:
10476
ISSN:
1611-3349
ISBN:
978-3-031-36026-8
Page Range / eLocation ID:
635-646
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The K-Truss of a graph is a cohesive subgraph that has been widely used for community detection in applications such as social networks and security analysis. In this paper, we first propose one optimized triangle search kernel with a few operations that can be used in both triangle counting and triangle search to replace the existing list intersection method. Based on the optimized kernel, three truss analytics algorithms, an optimized K-Truss parallel algorithm, a maximal K-Truss parallel algorithm, and a Truss decomposition parallel algorithm, are developed to efficiently enable different kinds of graph analysis. Moreover, all proposed parallel algorithms have been implemented in the highly-productive parallel language Chapel and integrated into the open-source framework Arkouda. Experimental results compared with the existing list intersection-based method show that for both synthetic and real-world graphs, the proposed method can significantly improve the performance of truss analysis on large graphs. The implemented method is publicly available from GitHub. 
    more » « less
  2. null (Ed.)
    Triangle counting is a fundamental technique in network analysis, that has received much attention in various input models. The vast majority of triangle counting algorithms are targeted to static graphs. Yet, many real-world graphs are directed and temporal, where edges come with timestamps. Temporal triangles yield much more information, since they account for both the graph topology and the timestamps. Temporal triangle counting has seen a few recent results, but there are varying definitions of temporal triangles. In all cases, temporal triangle patterns enforce constraints on the time interval between edges (in the triangle). We define a general notion (δ1,3,δ1,2,δ2,3)-temporal triangles that allows for separate time constraints for all pairs of edges. Our main result is a new algorithm, DOTTT (Degeneracy Oriented Temporal Triangle Totaler), that exactly counts all directed variants of (δ1,3,δ1,2,δ2,3)-temporal triangles. Using the classic idea of degeneracy ordering with careful combinatorial arguments, we can prove that DOTTT runs in O(mκlogm) time, where m is the number of (temporal) edges and κ is the graph degeneracy (max core number). Up to log factors, this matches the running time of the best static triangle counters. Moreover, this running time is better than existing. DOTTT has excellent practical behavior and runs twice as fast as existing state-of-the-art temporal triangle counters (and is also more general). For example, DOTTT computes all types of temporal queries in Bitcoin temporal network with half a billion edges in less than an hour on a commodity machine. 
    more » « less
  3. null (Ed.)
    Triangle counting is a fundamental technique in network analysis, that has received much attention in various input models. The vast majority of triangle counting algorithms are targeted to static graphs. Yet, many real-world graphs are directed and temporal, where edges come with timestamps. Temporal triangles yield much more information, since they account for both the graph topology and the timestamps. Temporal triangle counting has seen a few recent results, but there are varying definitions of temporal triangles. In all cases, temporal triangle patterns enforce constraints on the time interval between edges (in the triangle). We define a general notion (δ1,3,δ1,2,δ2,3)-temporal triangles that allows for separate time constraints for all pairs of edges. Our main result is a new algorithm, DOTTT (Degeneracy Oriented Temporal Triangle Totaler), that exactly counts all directed variants of (δ1,3,δ1,2,δ2,3)-temporal triangles. Using the classic idea of degeneracy ordering with careful combinatorial arguments, we can prove that DOTTT runs in O(mκlogm) time, where m is the number of (temporal) edges and κ is the graph degeneracy (max core number). Up to log factors, this matches the running time of the best static triangle counters. Moreover, this running time is better than existing. DOTTT has excellent practical behavior and runs twice as fast as existing state-of-the-art temporal triangle counters (and is also more general). For example, DOTTT computes all types of temporal queries in Bitcoin temporal network with half a billion edges in less than an hour on a commodity machine. 
    more » « less
  4. Identifying key members in large social network graphs is an important graph analytic. Recently, a new centrality measure called triangle centrality finds members based on the triangle support of vertices in graph. In this paper, we describe our rapid implementation of triangle centrality using Graph-BLAS, an API specification for describing graph algorithms in the language of linear algebra. We use triangle centrality’s algebraic algorithm and easily implement it using the SuiteSparse GraphBLAS library. A set of experiments on large, sparse graph datasets is conducted to verify the implementation. 
    more » « less
  5. Clique-counting is a fundamental problem that has application in many areas eg. dense subgraph discovery, community detection, spam detection, etc. The problem of k-clique-counting is difficult because as k increases, the number of k-cliques goes up exponentially. Enumeration algorithms (even parallel ones) fail to count k-cliques beyond a small k. Approximation algorithms, like TuránShadow have been shown to perform well upto k = 10, but are inefficient for larger cliques. The recently proposed Pivoter algorithm significantly improved the state-of-the-art and was able to give exact counts of all k-cliques in a large number of graphs. However, the clique counts of some graphs (for example, com-lj) are still out of reach of these algorithms. We revisit the TuránShadow algorithm and propose a generalized framework called YACC that leverages several insights about real-world graphs to achieve faster clique-counting. The bottleneck in TuránShadow is a recursive subroutine whose stopping condition is based on a classic result from extremal combinatorics called Turán's theorem. This theorem gives a lower bound for the k-clique density in a subgraph in terms of its edge density. However, this stopping condition is based on a worst-case graph that does not reflect the nature of real-world graphs. Using techniques for quickly discovering dense subgraphs, we relax the stopping condition in a systematic way such that we get a smaller recursion tree while still maintaining the guarantees provided by TuránShadow. We deploy our algorithm on several real-world data sets and show that YACC reduces the size of the recursion tree and the running time by over an order of magnitude. Using YACC, we are able to obtain clique counts for several graphs for which clique-counting was infeasible before, including com-lj. 
    more » « less