skip to main content


Title: Superhydrophilicity of alpha-alumina surfaces results from tight binding of interfacial waters to specific aluminols
Hypothesis Understanding the microscopic driving force of water wetting is challenging and important for design of materials. The relations between structure, dynamics and hydrogen bonds of interfacial water can be investigated using molecular dynamics simulations. Experiments and simulations Contact angles at the alumina (0001) and ( ) surfaces are studied using both classical molecular dynamics simulations and experiments. To test the superhydrophilicity, the free energy cost of removing waters near the interfaces are calculated using the density fluctuations method. The strength of hydrogen bonds is determined by their lifetime and geometry. Findings Both surfaces are superhydrophilic and the (0001) surface is more hydrophilic. Interactions between surfaces and interfacial waters promote a templating effect whereby the latter are aligned in a pattern that follows the underlying lattice of the surfaces. Translational and rotational dynamics of interfacial water molecules are slower than in bulk water. Hydrogen bonds between water and both surfaces are asymmetric, water-to-aluminol ones are stronger than aluminol-to-water ones. Molecular dynamics simulations eliminate the impacts of surface contamination when measuring contact angles and the results reveal the microscopic origin of the macroscopic superhydrophilicity of alumina surfaces: strong water-to-aluminol hydrogen bonds.  more » « less
Award ID(s):
1828421
NSF-PAR ID:
10477260
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Elsevier B.V.
Date Published:
Journal Name:
Journal of Colloid and Interface Science
ISSN:
1095-7103
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Surfaces that exhibit both superhydrophobic and superoleophobic properties have recently been demonstrated. Specifically, remarkable designs based on overhanging/inverse-trapezoidal microstructures enable water droplets to contact these surfaces only at the tips of the micro-pillars, in a state known as the Cassie state. However, the Cassie state may transition into the undesirable Wenzel state under certain conditions. Herein, we show from large-scale molecular dynamics simulations that the transition between the Cassie and Wenzel states can be controlled via precisely designed trapezoidal nanostructures on a surface. Both the base angle of the trapezoids and the intrinsic contact angle of the surface can be exploited to control the transition. For a given base angle, three regimes can be achieved: the Wenzel regime, in which water droplets can exist only in the Wenzel state when the intrinsic contact angle is less than a certain critical value; the Cassie regime, in which water droplets can exist only in the Cassie state when the intrinsic contact angle is greater than another critical value; and the bistable Wenzel–Cassie regime, in which both the Wenzel and Cassie states can exist when the intrinsic contact angle is between the two critical values. A strong base-angle dependence of the first critical value is revealed, whereas the second critical value shows much less dependence on the base angle. The stability of the Cassie state for various base angles (and intrinsic contact angles) is quantitatively evaluated by computing the free-energy barrier for the Cassie-to-Wenzel state transition. 
    more » « less
  2. Abstract

    We present the structure of an engineered protein–protein interface between two beta barrel proteins, which is mediated by interactions between threonine (Thr) residues. This Thr zipper structure suggests that the protein interface is stabilized by close‐packing of the Thr residues, with only one intermonomer hydrogen bond (H‐bond) between two of the Thr residues. This Thr‐rich interface provides a unique opportunity to study the behavior of Thr in the context of many other Thr residues. In previous work, we have shown that the side chain (χ1) dihedral angles of interface and core Thr residues can be predicted with high accuracy using a hard sphere plus stereochemical constraint (HS) model. Here, we demonstrate that in the Thr‐rich local environment of the Thr zipper structure, we are able to predict theχ1dihedral angles of most of the Thr residues. Some, however, are not well predicted by the HS model. We therefore employed explicitly solvated molecular dynamics (MD) simulations to further investigate the side chain conformations of these residues. The MD simulations illustrate the role that transient H‐bonding to water, in combination with steric constraints, plays in determining the behavior of these Thr side chains.

    Broader Audience Statement: Protein–protein interactions are critical to life and the search for ways to disrupt adverse protein–protein interactions involved in disease is an ongoing area of drug discovery. We must better understand protein–protein interfaces, both to be able to disrupt existing ones and to engineer new ones for a variety of biotechnological applications. We have discovered and characterized an artificial Thr‐rich protein–protein interface. This novel interface demonstrates a heretofore unknown property of Thr‐rich surfaces: mediating protein–protein interactions.

     
    more » « less
  3. The actin filament network is in part remodeled by the action of a family of filament severing proteins that are responsible for modulating the ratio between monomeric and filamentous actin. Recent work on the protein Actophorin from the amoeba Acanthamoeba castellani identified a series of site directed mutations that increase the thermal stability of the protein by 22 ◦C. Here, we expand this observation by showing that the mutant protein is also significantly stable to both equilibrium and kinetic chemical denaturation, and employ computer simulations to account for the increase in thermal or chemical stability through an accounting of atomic-level interactions. Specifically, the potential of mean force (PMF) can be obtained from steered molecular dynamics (SMD) simulations in which a protein is unfolded. However, SMD can be inefficient for large proteins as they require large solvent boxes, and computationally expensive as they require increasingly many SMD trajectories to converge the PMF. Adaptive steered molecular dynamics (ASMD) overcomes the second of these limitations by steering the particle in stages, which allows for convergence of the PMF using fewer trajectories compared to SMD. Use of the telescoping water scheme within ASMD partially overcomes the first of these limitations by reducing the number of waters at each stage to only those needed to solvate the structure within a given stage. In the PMFs obtained from ASMD, the work of unfolding Acto-2 was found to be higher than the Acto-WT by approximately 120 kCal/mol and reflects the increased stability seen in the chemical denaturation experiments. The evolution of the average number of hydrogen bonds andnumber of salt bridges during the pulling process provides a mechanistic view of the structural changes of the Actophorin protein as it is unfolded, and how it is affected by the mutation in concert with the energetics reported through the PMF. 
    more » « less
  4. Molybdenum disulfide (MoS 2 ) is a layered material with outstanding electrical and optical properties. Numerous studies evaluate the performance in sensors, catalysts, batteries, and composites that can benefit from guidance by simulations in all-atom resolution. However, molecular simulations remain difficult due to lack of reliable models. We introduce an interpretable force field for MoS 2 with record performance that reproduces structural, interfacial, and mechanical properties in 0.1% to 5% agreement with experiments. The model overcomes structural instability, deviations in interfacial and mechanical properties by several 100%, and empirical fitting protocols in earlier models. It is compatible with several force fields for molecular dynamics simulation, including the interface force field (IFF), CVFF, DREIDING, PCFF, COMPASS, CHARMM, AMBER, and OPLS-AA. The parameters capture polar covalent bonding, X-ray structure, cleavage energy, infrared spectra, bending stability, bulk modulus, Young's modulus, and contact angles with polar and nonpolar solvents. We utilized the models to uncover the binding mechanism of peptides to the MoS 2 basal plane. The binding strength of several 7mer and 8mer peptides scales linearly with surface contact and replacement of surface-bound water molecules, and is tunable in a wide range from −86 to −6 kcal mol −1 . The binding selectivity is multifactorial, including major contributions by van-der-Waals coordination and charge matching of certain side groups, orientation of hydrophilic side chains towards water, and conformation flexibility. We explain the relative attraction and role of the 20 amino acids using computational and experimental data. The force field can be used to screen and interpret the assembly of MoS 2 -based nanomaterials and electrolyte interfaces up to a billion atoms with high accuracy, including multiscale simulations from the quantum scale to the microscale. 
    more » « less
  5. Molecular dynamics (MD) simulations were used to investigate the structure and lifetimes of hydrogen bonds and auto dissociation via proton transfer in bulk water using a reactive and dissociative all-atom potential that has previously been shown to match a variety of water properties and proton transfer. Using the topological model, each molecule's donated and accepted hydrogen bonds were labeled relative to the other hydrogen bonds on neighboring waters, providing a description of the effect of these details on the structure, dynamics and autoionization of water molecules. In agreement with prior data, asymmetric bonding at the sub-100 femtosecond timescale is observed, as well as the existence of linear, bifurcated, and dangling hydrogen bonds. The lifetime of the H-bond, 2.1 ps, is consistent with experimental data, with short time librations on the order of femtoseconds. The angular correlation functions, the presence of a second shell water entering the first shell, and OH vibrational stretch frequencies were all consistent with experiment or ab initio calculations. The simulations show short-lived (femtoseconds) dissociation of a small fraction of water molecules followed by rapid recombination. The role of the other H-bonds to the acceptor and on the donor plays an important part in proton transfer between the molecules in auto dissociation and is consistent with the role of a strong electric field caused by local (first and second shell) waters on initiating dissociation. The number of H-bonds to the donor water is 4.3 per molecule in the simulations, consistent with previous data regarding the number of hydrogen bonds required to generate this strong local electric field that enhances dissociation. The continuous lifetime autocorrelation function of the H-bond for those molecules that experience dissociation is considerably longer than that for all molecules that show no proton transfer. 
    more » « less