UAVs (unmanned aerial vehicles) or drones are promising instruments for video-based surveillance. Various applications of aerial surveillance use object detection programs to detect target objects. In such applications, three parameters influence a drone deployment strategy: the area covered by the drone, the latency of target (object) detection, and the quality of the detection output by the object detector. Previous works have focused on improving Pareto optimality along the area-latency frontier or the area-quality frontier, but not on the combined area-latency-quality frontier, because of which these solutions are sub-optimal for drone-based surveillance. We explore a three way tradeoff between area, latency, and quality in the context of autonomous aerial surveillance of targets in an area using drones with cameras and an object detection program. We propose Vega, a drone deployment framework that captures these tradeoffs to deploy drones efficiently. We make three contributions with Vega. First, we characterize the ability of the state-of-the-art mobile object detector, EfficientDet [CPVR '20], to detect objects from varying drone altitudes using confidence and IoU curves vs. drone altitude. Second, based on these characteristics of the detector, we propose a set of two algorithmic primitives for drone-based maneuvers, namely DroneZoom and DroneCycle. Using these two primitives, we obtain a more optimal Pareto frontier between our three target parameters - coverage area, detection latency, and detection quality for a single drone system. Third, we scale out our findings to a swarm deployment using higher-order Voronoi tessellations, where we control the swarm's spatial density using the Voronoi order to further lower the detection latency while maintaining detection quality.
more »
« less
Intrusion Detection Framework for Invasive FPV Drones Using Video Streaming Characteristics
Cheapcommercial off-the-shelf (COTS)First-Person View (FPV)drones have become widely available for consumers in recent years. Unfortunately, they also provide low-cost attack opportunities to malicious users. Thus, effective methods to detect the presence of unknown and non-cooperating drones within a restricted area are highly demanded. Approaches based on detection of drones based on emitted video stream have been proposed, but were not yet shown to work against other similar benign traffic, such as that generated by wireless security cameras. Most importantly, these approaches were not studied in the context of detecting new unprofiled drone types. In this work, we propose a novel drone detection framework, which leverages specific patterns in video traffic transmitted by drones. The patterns consist of repetitive synchronization packets (we call pivots), which we use as features for a machine learning classifier. We show that our framework can achieve up to 99% in detection accuracy over an encrypted WiFi channel using only 170 packets originated from the drone within 820ms time period. Our framework is able to identify drone transmissions even among very similar WiFi transmissions (such as video streams originated from security cameras) as well as in noisy scenarios with background traffic. Furthermore, the design of our pivot features enables the classifier to detect unprofiled drones in which the classifier has never trained on and is refined using a novel feature selection strategy that selects the features that have the discriminative power of detecting new unprofiled drones.
more »
« less
- Award ID(s):
- 2003237
- PAR ID:
- 10477301
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- ACM Transactions on Cyber-Physical Systems
- Volume:
- 7
- Issue:
- 2
- ISSN:
- 2378-962X
- Page Range / eLocation ID:
- 1 to 29
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
As video traffic dominates the Internet, it is important for operators to detect video Quality of Experience (QoE) in order to ensure adequate support for video traffic. With wide deployment of endto- end encryption, traditional deep packet inspection based traffic monitoring approaches are becoming ineffective. This poses a challenge for network operators to monitor user QoE and improve upon their experience. To resolve this issue, we develop and present a system for REal-time QUality of experience metric detection for Encrypted Traffic, Requet. Requet uses a detection algorithm we develop to identify video and audio chunks from the IP headers of encrypted traffic. Features extracted from the chunk statistics are used as input to a Machine Learning (ML) algorithm to predict QoE metrics, specifically, buffer warning (low buffer, high buffer), video state (buffer increase, buffer decay, steady, stall), and video resolution. We collect a large YouTube dataset consisting of diverse video assets delivered over various WiFi network conditions to evaluate the performance. We compare Requet with a baseline system based on previous work and show that Requet outperforms the baseline system in accuracy of predicting buffer low warning, video state, and video resolution by 1.12×, 1.53×, and 3.14×, respectively.more » « less
-
Small-scale unmanned aerial vehicles (UAVs) have become an increased presence in recent years due to their decreasing price and ease of use. Similarly, ways to detect drones through easily accessible programs like WireShark have raised more potential threats, including an increase in ease of jamming and spoofing drones utilizing commercially of the shelf (COTS) equipment like software defined radio (SDR). Given these advancements, an active area of research is drone security. Recent research has focused on using a HackRF SDR to perform eavesdropping or jamming attacks; however, most have failed to show a proposed remediation. Similarly, many research papers show post analysis of communications, but seem to lack a conclusive demonstration of command manipulation. Our security assessment shows clear steps in the manipulation of a WiFi drone using the aircrack-ng suite without the need for additional equipment like a SDR. This shows that anyone with access to a computer could potentially take down a drone. Alarmingly, we found that the COTS WiFi drone in our experiment still lacked the simple security measure of a password, and were very easily able to take over the drone in a deauthorization attack. We include a proposed remediation to mitigate the preformed attack and assess the entire process using the STRIDE and DREAD models. In doing so, we demonstrate a full attack process and provide a resolution to said attack.more » « less
-
Camera-based systems are increasingly used for collecting information on intersections and arterials. Unlike loop controllers that can generally be only used for detection and movement of vehicles, cameras can provide rich information about the traffic behavior. Vision-based frameworks for multiple-object detection, object tracking, and near-miss detection have been developed to derive this information. However, much of this work currently addresses processing videos offline. In this article, we propose an integrated two-stream convolutional networks architecture that performs real-time detection, tracking, and near-accident detection of road users in traffic video data. The two-stream model consists of a spatial stream network for object detection and a temporal stream network to leverage motion features for multiple-object tracking. We detect near-accidents by incorporating appearance features and motion features from these two networks. Further, we demonstrate that our approaches can be executed in real-time and at a frame rate that is higher than the video frame rate on a variety of videos collected from fisheye and overhead cameras.more » « less
-
Network Telescopes, often referred to as darknets, capture unsolicited traffic directed toward advertised but unused IP spaces, enabling researchers and operators to monitor malicious, Internet-wide network phenomena such as vulnerability scanning, botnet propagation, and DoS backscatter. Detecting these events, however,has become increasingly challenging due to the growing traffic volumes that telescopes receive. To address this, we introduce DarkSim,a novel analytic framework that utilizes Dynamic Time Warping to measure similarities within the high-dimensional time series of network traffic. DarkSim combines traditional raw packet processing with statistical approaches, identifying traffic anomalies and enabling rapid time-to-insight. We evaluate our framework against DarkGLASSO, an existing method based on the GraphicalLASSO algorithm, using data from the UCSD Network Telescope.Based on our manually classified detections, DarkSim showcased perfect precision and an overlap of up to 91% of DarkGLASSO’s detections in contrast to DarkGLASSO’s maximum of 73.3% precision and detection overlap of 37.5% with the former. We further demonstrate DarkSim’s capability to detect two real-world events in our case studies: (1) an increase in scanning activities surrounding CVE public disclosures, and (2) shifts in country and network-level scanning patterns that indicate aggressive scanning. DarkSim provides a detailed and interpretable analysis framework for time-series anomalies, representing a new contribution to network security analytics.more » « less
An official website of the United States government

