skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Accurate Interaction Energies of CO 2 with the 20 Naturally Occurring Amino Acids
Abstract We have performed a series of highly accurate calculations between CO2and the 20 naturally occurring amino acids for the investigation of the attractive noncovalent interactions. Different nucleophilic groups present in the amino acid structures were considered (α‐NH2, COOH, side groups), and the stronger binding sites were identified. A database of accurate reference interactions energies was compiled as computed by explicitly‐correlated coupled‐cluster singles‐and‐doubles, together with perturbative triples extrapolated to the complete‐basis‐set limit. The CCSD(F12)(T)/CBS reference values were used for comparing a variety of popular density functionals with different basis sets. Our results show that most density functionals with the triple‐zeta basis set def2‐TZVPP align with the CCSD(F12)(T)/CBS reference values, but errors range from 0.1 kcal/mol up to 1.0 kcal/mol.  more » « less
Award ID(s):
2143354
PAR ID:
10477372
Author(s) / Creator(s):
;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
ChemPhysChem
Volume:
24
Issue:
13
ISSN:
1439-4235
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hypohalous acids (HOX) are a class of molecules that play a key role in the atmospheric seasonal depletion of ozone and have the ability to form both hydrogen and halogen bonds. The interactions between the HOX monomers (X = F, Cl, Br) and water have been studied at the CCSD(T)/aug-cc-pVTZ level of theory with the spin free X2C-1e method to account for scalar relativistic effects. Focal point analysis was used to determine CCSDT(Q)/CBS dissociation energies. The anti hydrogen bonded dimers were found with interaction energies of −5.62 kcal mol −1 , −5.56 kcal mol −1 , and −4.97 kcal mol −1 for X = F, Cl, and Br, respectively. The weaker halogen bonded dimers were found to have interaction energies of −1.71 kcal mol −1 and −3.03 kcal mol −1 for X = Cl and Br, respectively. Natural bond orbital analysis and symmetry adapted perturbation theory were used to discern the nature of the halogen and hydrogen bonds and trends due to halogen substitution. The halogen bonds were determined to be weaker than the analogous hydrogen bonds in all cases but close enough in energy to be relevant, significantly more so with increasing halogen size. 
    more » « less
  2. The many-body expansion (MBE) is promising for the efficient, parallel computation of lattice energies in organic crystals. Very high accuracy should be achievable by employing coupled-cluster singles, doubles, and perturbative triples at the complete basis set limit [CCSD(T)/CBS] for the dimers, trimers, and potentially tetramers resulting from the MBE, but such a brute-force approach seems impractical for crystals of all but the smallest molecules. Here, we investigate hybrid or multi-level approaches that employ CCSD(T)/CBS only for the closest dimers and trimers and utilize much faster methods like Møller–Plesset perturbation theory (MP2) for more distant dimers and trimers. For trimers, MP2 is supplemented with the Axilrod–Teller–Muto (ATM) model of three-body dispersion. MP2(+ATM) is shown to be a very effective replacement for CCSD(T)/CBS for all but the closest dimers and trimers. A limited investigation of tetramers using CCSD(T)/CBS suggests that the four-body contribution is entirely negligible. The large set of CCSD(T)/CBS dimer and trimer data should be valuable in benchmarking approximate methods for molecular crystals and allows us to see that a literature estimate of the core-valence contribution of the closest dimers to the lattice energy using just MP2 was overbinding by 0.5 kJ mol−1, and an estimate of the three-body contribution from the closest trimers using the T0 approximation in local CCSD(T) was underbinding by 0.7 kJ mol−1. Our CCSD(T)/CBS best estimate of the 0 K lattice energy is −54.01 kJ mol−1, compared to an estimated experimental value of −55.3 ± 2.2 kJ mol−1. 
    more » « less
  3. The focal-point approximation can be used to estimate a high-accuracy, slow quantum chemistry computation by combining several lower-accuracy, faster computations. We examine the performance of focal-point methods by combining second-order Møller–Plesset perturbation theory (MP2) with coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] for the calculation of harmonic frequencies and that of fundamental frequencies using second-order vibrational perturbation theory (VPT2). In contrast to standard CCSD(T), the focal-point CCSD(T) method approaches the complete basis set (CBS) limit with only triple-ζ basis sets for the coupled-cluster portion of the computation. The predicted harmonic and fundamental frequencies were compared with the experimental values for a set of 20 molecules containing up to six atoms. The focal-point method combining CCSD(T)/aug-cc-pV(T + d)Z with CBS-extrapolated MP2 has mean absolute errors vs experiment of only 7.3 cm−1 for the fundamental frequencies, which are essentially the same as the mean absolute error for CCSD(T) extrapolated to the CBS limit using the aug-cc-pV(Q + d)Z and aug-cc-pV(5 + d)Z basis sets. However, for H2O, the focal-point procedure requires only 3% of the computation time as the extrapolated CCSD(T) result, and the cost savings will grow for larger molecules. 
    more » « less
  4. In this work, we present NENCI-2021, a benchmark database of ∼8000 Non-Equilibirum Non-Covalent Interaction energies for a large and diverse selection of intermolecular complexes of biological and chemical relevance. To meet the growing demand for large and high-quality quantum mechanical data in the chemical sciences, NENCI-2021 starts with the 101 molecular dimers in the widely used S66 and S101 databases and extends the scope of these works by (i) including 40 cation–π and anion–π complexes, a fundamentally important class of non-covalent interactions that are found throughout nature and pose a substantial challenge to theory, and (ii) systematically sampling all 141 intermolecular potential energy surfaces (PESs) by simultaneously varying the intermolecular distance and intermolecular angle in each dimer. Designed with an emphasis on close contacts, the complexes in NENCI-2021 were generated by sampling seven intermolecular distances along each PES (ranging from 0.7× to 1.1× the equilibrium separation) and nine intermolecular angles per distance (five for each ion–π complex), yielding an extensive database of 7763 benchmark intermolecular interaction energies (Eint) obtained at the coupled-cluster with singles, doubles, and perturbative triples/complete basis set [CCSD(T)/CBS] level of theory. The Eint values in NENCI-2021 span a total of 225.3 kcal/mol, ranging from −38.5 to +186.8 kcal/mol, with a mean (median) Eint value of −1.06 kcal/mol (−2.39 kcal/mol). In addition, a wide range of intermolecular atom-pair distances are also present in NENCI-2021, where close intermolecular contacts involving atoms that are located within the so-called van der Waals envelope are prevalent—these interactions, in particular, pose an enormous challenge for molecular modeling and are observed in many important chemical and biological systems. A detailed symmetry-adapted perturbation theory (SAPT)-based energy decomposition analysis also confirms the diverse and comprehensive nature of the intermolecular binding motifs present in NENCI-2021, which now includes a significant number of primarily induction-bound dimers (e.g., cation–π complexes). NENCI-2021 thus spans all regions of the SAPT ternary diagram, thereby warranting a new four-category classification scheme that includes complexes primarily bound by electrostatics (3499), induction (700), dispersion (1372), or mixtures thereof (2192). A critical error analysis performed on a representative set of intermolecular complexes in NENCI-2021 demonstrates that the Eint values provided herein have an average error of ±0.1 kcal/mol, even for complexes with strongly repulsive Eint values, and maximum errors of ±0.2–0.3 kcal/mol (i.e., ∼±1.0 kJ/mol) for the most challenging cases. For these reasons, we expect that NENCI-2021 will play an important role in the testing, training, and development of next-generation classical and polarizable force fields, density functional theory approximations, wavefunction theory methods, and machine learning based intra- and inter-molecular potentials. 
    more » « less
  5. Nitroxyl (HNO) and hydrogen peroxide have both been implicated in a variety of reactions relevant to environmental and physiological processes and may contribute to a unique, unexplored, pathway for the production of nitrous acid (HONO) in soil. To investigate the potential for this reaction, we report an in-depth investigation of the reaction pathway of H 2 O 2 and HNO forming HONO and water. We find the breaking of the peroxide bond and a coupled proton transfer in the first step leads to hydrogen nitryl (HNO 2 ) and an endogenous water, with an extrapolated NEVPT2 (multireference perturbation theory) barrier of 29.3 kcal mol −1 . The first transition state is shown to possess diradical character linking the far peroxide oxygen to the bridging, reacting, peroxide oxygen. The energy of this first step, when calculated using hybrid density functional theory, is shown to depend heavily on the amount of Hartree–Fock exchange in the functional, with higher amounts leading to a higher barrier and more diradical character. Additionally, high amounts of spin contamination cause CCSD(T) to significantly overestimate the TS1 barrier with a value of 36.2 kcal mol −1 when using the stable UHF wavefunction as the reference wavefunction. However, when using the restricted Hartree–Fock reference wavefunction, the TS1 CCSD(T) energy is lowered to yield a barrier of 31.2 kcal mol −1 , in much better agreement with the NEVPT2 result. The second step in the reaction is the isomerization of HNO 2 to trans -HONO through a Grotthuss-like mechanism accepting a proton from and donating a proton to the endogenous water. This new mechanism for the isomerization of HNO 2 is shown to have an NEVPT2 barrier of 23.3 kcal mol −1 , much lower than previous unimolecular estimates not including an explicit water. Finally, inclusion of an additional explicit water is shown to lower the HNO 2 isomerization barrier even further. 
    more » « less