skip to main content


Title: Cyclical prey shortages for a marine polar predator driven by the interaction of climate change and natural climate variability
Abstract

Between 1992 and 2018, the breeding population of Adélie penguins around Anvers Island, Antarctica declined by 98%. In this region, natural climate variability drives five‐year cycling in marine phytoplankton productivity, leading to phase‐offset five‐year cycling in the size of the krill population. We demonstrate that the rate of change of the Adélie breeding population also shows five‐year cycling. We link this population response to cyclical krill scarcity, a phenomenon which appears to have arisen from the interaction between climate variability and climate change trends. Modeling suggests that, since at least 1980, natural climate variability has driven cycling in this marine system. However, anthropogenic climate change has shifted conditions so that fewer years in each cycle now prompt strong krill recruitment, triggering intervals of krill scarcity that result in drastic declines in Adélie penguins. Our results imply that climate change can amplify the impacts of natural climate oscillations across trophic levels, driving cycling across species and disrupting food webs. The findings indicate that climate variability plays an integral role in driving ecosystem dynamics under climate change.

 
more » « less
NSF-PAR ID:
10477417
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Volume:
68
Issue:
12
ISSN:
0024-3590
Format(s):
Medium: X Size: p. 2668-2687
Size(s):
["p. 2668-2687"]
Sponsoring Org:
National Science Foundation
More Like this
  1. We evaluated annual and regional variation in the dietary niche of Pygoscelis penguins including the sea ice-obligate Adélie penguin ( Pygoscelis adeliae ), and sea ice-intolerant chinstrap ( Pygoscelis antarcticus ) and gentoo ( Pygoscelis papua ) penguins, three species that nest throughout the western Antarctic Peninsula (AP) to test the sea ice trophic interaction hypothesis , which posits that penguin breeding populations with divergent trends, i.e., declining or increasing, are reliant on differing food webs. Our study relies on values of naturally occurring carbon ( 13 C/ 12 C, δ 13 C) and nitrogen ( 15 N/ 14 N, δ 15 N) stable isotopes as integrated proxies of penguin food webs measured over three years at three different breeding colonies. At Anvers Island in the north, where reductions in sea ice and changes in breeding population trends among sympatric sea ice-obligate (Adélie) and sea ice-intolerant (chinstrap and gentoo) penguins have been most notable, our analyses show that all three species of Pygoscelis penguins became more similar isotopically over the reproductive period. By late chick-rearing at Anvers Island, crèched chicks at 5-weeks-old for all species occupied similar trophic positions. Isotopic mixing models indicated that the proportions of prey provisioned by adult penguins to 5-week-old chicks at Anvers Island were generally similar across species within years, consisting primarily of Antarctic krill ( Euphausia superba ). Crèched Adélie chicks had higher δ 13 C and δ 15 N values at Avian and Charcot Islands, southern breeding colonies where sea ice is more prominent and populations of Adélie penguins have increased or remain stable. Trophic position increased with latitude, while the proportions of prey provisioned by Adélie penguin adults to chicks at southern breeding colonies included species typical of high Antarctic marine food webs, especially crystal krill ( Euphausia crystallorophias ). A Bayesian metric for dietary niche width, standard ellipse area (SEA-B), indicated that Pygoscelis penguins with greater population changes in the north had more variability in dietary niche width than stable populations further south. Our results lend insight on marine food web drivers of Pygoscelis penguin reproduction at the regional scale and question the long-standing paradigm that Antarctic krill are the only food web component critical to penguin reproductive survival in this region of the Southern Ocean. 
    more » « less
  2. Abstract

    Understanding the scales at which environmental variability affects populations is critical for projecting population dynamics and species distributions in rapidly changing environments. Here we used a multilevel Bayesian analysis of range‐wide survey data for Adélie penguins to characterize multidecadal and annual effects of sea ice on population growth. We found that mean sea ice concentration at breeding colonies (i.e., “prevailing” environmental conditions) had robust nonlinear effects on multidecadal population trends and explained over 85% of the variance in mean population growth rates among sites. In contrast, despite considerable year‐to‐year fluctuations in abundance at most breeding colonies, annual sea ice fluctuations often explained less than 10% of the temporal variance in population growth rates. Our study provides an understanding of the spatially and temporally dynamic environmental factors that define the range limits of Adélie penguins, further establishing this iconic marine predator as a true sea ice obligate and providing a firm basis for projection under scenarios of future climate change. Yet, given the weak effects of annual sea ice relative to the large unexplained variance in year‐to‐year growth rates, the ability to generate useful short‐term forecasts of Adélie penguin breeding abundance will be extremely limited. Our approach provides a powerful framework for linking short‐ and longer term population processes to environmental conditions that can be applied to any species, facilitating a richer understanding of ecological predictability and sensitivity to global change.

     
    more » « less
  3. Abstract

    Studies of Antarctic paleo‐archives have produced conflicting hypotheses on the relative impact of long‐term climate change and historic exploitation of marine mammals on Southern Ocean krill predator foraging ecology. We disentangle these hypotheses using amino acid stable isotope analysis on a 7000‐yr Holocene archive of Adélie penguin (Pygoscelis adeliae) eggshells to differentiate variation in diet and trophic dynamics from baseline biogeochemical cycling as drivers of the rapid decline in krill predator bulk tissue δ15N values in recent centuries. Contrary to previous hypotheses suggesting solely trophic dynamic mechanisms as drivers of this decline, we identified an abrupt decline in source amino acid δ15N values, indicative of major changes in biogeochemical cycling at the base of the Southern Ocean food web that mirrored the decline in penguin bulk tissue δ15N values. These abrupt shifts in penguin δ15N values and associated biogeochemical cycling aligned with climatic events during the Little Ice Age that decreased surface δ15NNO3−, likely connected to a proposed increase in Ekman upwelling via a southward migration of the Westerlies. This baseline shift was in addition to a long‐term, gradual decline in penguin trophic position over the Holocene that began prior to both recent anthropogenic climate change and a proposed “krill‐surplus” following historic marine mammal exploitation in the 19thand 20thcenturies. In resolving these outstanding hypotheses about drivers of Southern Ocean food web dynamics, this study emphasizes the fundamental importance of climate‐induced variability in biogeochemical cycling on ecological processes and improves the ability of paleo‐archives to inform the ecological consequences of future environmental change in the Southern Ocean.

     
    more » « less
  4. Abstract

    The impacts of climate change in Antarctica and the Southern Ocean are not uniform and ice‐obligate species with dissimilar life‐history characteristics will likely respond differently to their changing ecosystems. We use a unique data set of WeddellLeptonychotes weddelliiand crabeater seals' (CESs)Lobodon carcinophagabreeding season distribution in the Weddell Sea, determined from satellite imagery. We contrast the theoretical climate impacts on both ice‐obligate predators who differ in life‐history characteristics: CESs are highly specialized Antarctic krillEuphausia superbapredators and breed in the seasonal pack ice; Weddell seals (WESs) are generalist predators and breed on comparatively stable fast ice. We used presence–absence data and a suite of remotely sensed environmental variables to build habitat models. Each of the environmental predictors is multiplied by a ‘climate change score’ based on known responses to climate change to create a ‘change importance product’. Results show CESs are more sensitive to climate change than WESs. Crabeater seals prefer to breed close to krill, and the compounding effects of changing sea ice concentrations and sea surface temperatures, the proximity to krill and abundance of stable breeding ice, can influence their post‐breeding foraging success and ultimately their future breeding success. But in contrast to the Ross Sea, here WESs prefer to breed closer to larger colonies of emperor penguins (Aptenodytes forsteri). This suggests that the Weddell Sea may currently be prey‐abundant, allowing the only two air‐breathing Antarctic silverfish predators (Pleuragramma antarctica) (WESs and emperor penguins) to breed closer to each other. This is the first basin‐scale, region‐specific comparison of breeding season habitat in these two key Antarctic predators based on real‐world data to compare climate change responses. This work shows that broad‐brush, basin‐scale approaches to understanding species‐specific responses to climate change are not always appropriate, and regional models are needed—especially when designing marine protected areas.

     
    more » « less
  5. Abstract

    The Palmer Deep canyon along the West Antarctic Peninsula is a biological hotspot with abundant phytoplankton and krill supporting Adélie and gentoo penguin rookeries at the canyon head. Nearshore studies have focused on physical mechanisms driving primary production and penguin foraging, but less is known about finer‐scale krill distribution and density. We designed two acoustic survey grids paired with conductivity–temperature–depth profiles within adjacent Adélie and gentoo penguin foraging regions near Palmer Station, Antarctica. The grids were sampled from January to March 2019 to assess variability in krill availability and associations with oceanographic properties. Krill density was similar in the two regions, but krill swarms were longer and larger in the gentoo foraging region, which was also less stratified and had lower chlorophyll concentrations. In the inshore zone near penguin colonies, depth‐integrated krill density increased from summer to autumn (January–March) independent of chlorophyll concentration, suggesting a life history‐driven adult krill migration rather than a resource‐driven biomass increase. The daytime depth of krill biomass deepened through the summer and became decoupled from the chlorophyll maximum in March as diel vertical migration magnitude likely increased. Penguins near Palmer Station did not appear to be limited by krill availability during our study, and regional differences in krill depth match the foraging behaviors of the two penguin species. Understanding fine‐scale physical forcing and ecological interactions in coastal Antarctic hotspots is critical for predicting how environmental change will impact these ecosystems.

     
    more » « less