skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mechanistic manifold in a hemoprotein-catalyzed cyclopropanation reaction with diazoketone
Abstract Hemoproteins have recently emerged as promising biocatalysts for new-to-nature carbene transfer reactions. However, mechanistic understanding of the interplay between productive and unproductive pathways in these processes is limited. Using spectroscopic, structural, and computational methods, we investigate the mechanism of a myoglobin-catalyzed cyclopropanation reaction with diazoketones. These studies shed light on the nature and kinetics of key catalytic steps in this reaction, including the formation of an early heme-bound diazo complex intermediate, the rate-determining nature of carbene formation, and the cyclopropanation mechanism. Our analyses further reveal the existence of a complex mechanistic manifold for this reaction that includes a competing pathway resulting in the formation of an N-bound carbene adduct of the heme cofactor, which was isolated and characterized by X-ray crystallography, UV-Vis, and Mössbauer spectroscopy. This species can regenerate the active biocatalyst, constituting a non-productive, yet non-destructive detour from the main catalytic cycle. These findings offer a valuable framework for both mechanistic analysis and design of hemoprotein-catalyzed carbene transfer reactions.  more » « less
Award ID(s):
2054897 1929256
PAR ID:
10477463
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Organophosphonate compounds have represented a rich source of biologically active compounds, including enzyme inhibitors, antibiotics, and antimalarial agents. Here, we report the development of a highly stereoselective strategy for olefin cyclopropanation in the presence of a phosphonyl diazo reagent as carbene precursor. In combination with a ‘substrate walking’ protein engineering strategy, two sets of efficient and enantiodivergent myoglobin-based biocatalysts were developed for the synthesis of both (1 R ,2 S ) and (1 S ,2 R ) enantiomeric forms of the desired cyclopropylphosphonate ester products. This methodology enables the efficient transformation of a broad range of vinylarene substrates at a preparative scale ( i.e. gram scale) with up to 99% de and ee. Mechanistic studies provide insights into factors that contribute to make this reaction inherently more challenging than hemoprotein-catalyzed olefin cyclopropanation with ethyl diazoacetate investigated previously. This work expands the range of synthetically useful, enzyme-catalyzed transformations and paves the way to the development of metalloprotein catalysts for abiological carbene transfer reactions involving non-canonical carbene donor reagents. 
    more » « less
  2. Abstract A chemobiocatalytic strategy for the highly stereoselective synthesis of nitrile‐substituted cyclopropanes is reported. The present approach relies on an asymmetric olefin cyclopropanation reaction catalyzed by an engineered myoglobin in the presence of ex situ generated diazoacetonitrile within a compartmentalized reaction system. This method enabled the efficient transformation of a broad range of olefin substrates at a preparative scale with up to 99.9 % de and ee and up to 5600 turnovers. The enzymatic product could be further elaborated to afford a variety of functionalized chiral cyclopropanes. This work expands the range of synthetically valuable, abiotic transformations accessible through biocatalysis and paves the way to the practical and safe exploitation of diazoacetonitrile in biocatalytic carbene transfer reactions. 
    more » « less
  3. The catalytic uses of metal carbenes for addition, insertion, and cycloaddition reactions are dependent on their carbene precursor. The limited methods available for the preparation of diazo esters, which are the most common carbene precursors, restricts their ability to impart structural diversity in metal carbene reactions. Here we report a new methodology for the preparation of diverse vinyldiazoacetate esters and their effective uses in highly enantiocontrolled cyclopropanation, N-H bond insertion, O-H bond insertion, and [3+2] cycloaddition reactions. 1,2,3-Triazine 1-oxides with a sp3-C-H bond at the 5-position undergo base catalyzed Dimroth-type rearrangement to form multiply substituted oximidovinyldiazoacetates in high yields at or below room temperature, and these diverse vinyldiazo compounds undergo catalytic metal carbene transformations to produce oximidovinylcyclopropanes, α-oximidovinyl-α-amino acids and α-hydroxy acids, as well as tricyclic indole derivatives in high yields and enantioselectivities. The new access to vinyldiazo compounds has applicability to a vast array of metal carbene transformations. 
    more » « less
  4. Allyl carboxylates are useful synthetic intermediates in a variety of organic transformations, including catalytic nucleophilic/electrophilic allylic substitution reactions and 1,2-difunctionalization reactions. However, the catalytic 1,3-difunctionalization of allyl carboxylates remains elusive. Herein, we report the first photoinduced, phosphine-catalyzed 1,3-carbobromination of allyl carboxylates, affording a range of valuable substituted isopropyl carboxylates (sIPC). The transformation has broad functional group tolerance, is amenable to the late-stage modification of complex molecules and gram-scale synthesis, and expands the reaction profiles of allyl carboxylates and phosphine catalysis. Preliminary experimental and computational studies suggest a non-chain-radical mechanism involving the formation of an electron donor–acceptor complex, 1,2-radical migration (RaM), and Br-atom transfer processes. We anticipate that the 1,2-RaM reactivity of allyl carboxylates and the phosphine-catalyzed radical reaction will both serve as a platform for the development of new transformations in organic synthesis. 
    more » « less
  5. This article highlights recent computational research on heme-based carbene transfer reactions. Mechanistic insights reveal how cofactor components, coordination modes, substrates, and protein environments influence reactivity and selectivity. 
    more » « less