Driving safety is a top priority for autonomous vehicles. Orthogonal to prior work handling accident-prone traffic events by algorithm designs at the policy level, we investigate a Closed-loop Adversarial Training (CAT) framework for safe end-to-end driving in this paper through the lens of environment augmentation. CAT aims to continuously improve the safety of driving agents by training the agent on safety-critical scenarios that are dynamically generated over time. A novel resampling technique is developed to turn log-replay real-world driving scenarios into safety-critical ones via probabilistic factorization, where the adversarial traffic generation is modeled as the multiplication of standard motion prediction sub-problems. Consequently, CAT can launch more efficient physical attacks compared to existing safety-critical scenario generation methods and yields a significantly less computational cost in the iterative learning pipeline. We incorporate CAT into the MetaDrive simulator and validate our approach on hundreds of driving scenarios imported from real-world driving datasets. Experimental results demonstrate that CAT can effectively generate adversarial scenarios countering the agent being trained. After training, the agent can achieve superior driving safety in both log-replay and safety-critical traffic scenarios on the held- out test set. Code and data are available at https://metadriverse.github.io/cat. 
                        more » 
                        « less   
                    
                            
                            ScenarioNet: Open-Source Platform for Large-Scale Traffic Scenario Simulation and Modeling
                        
                    
    
            Large-scale driving datasets such as Waymo Open Dataset and nuScenes substantially accelerate autonomous driving research, especially for perception tasks such as 3D detection and trajectory forecasting. Since the driving logs in these datasets contain HD maps and detailed object annotations that accurately reflect the real- world complexity of traffic behaviors, we can harvest a massive number of complex traffic scenarios and recreate their digital twins in simulation. Compared to the hand- crafted scenarios often used in existing simulators, data-driven scenarios collected from the real world can facilitate many research opportunities in machine learning and autonomous driving. In this work, we present ScenarioNet, an open-source platform for large-scale traffic scenario modeling and simulation. ScenarioNet defines a unified scenario description format and collects a large-scale repository of real-world traffic scenarios from the heterogeneous data in various driving datasets including Waymo, nuScenes, Lyft L5, Argoverse, and nuPlan datasets. These scenarios can be further replayed and interacted with in multiple views from Bird- Eye-View layout to realistic 3D rendering in MetaDrive simulator. This provides a benchmark for evaluating the safety of autonomous driving stacks in simulation before their real-world deployment. We further demonstrate the strengths of ScenarioNet on large-scale scenario generation, imitation learning, and reinforcement learning in both single-agent and multi-agent settings. Code, demo videos, and website are available at https://metadriverse.github.io/scenarionet. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2235012
- PAR ID:
- 10477503
- Publisher / Repository:
- Neural Information Processing Systems (NeurIPS) 2023
- Date Published:
- Journal Name:
- Advances in neural information processing systems
- ISSN:
- 1049-5258
- Format(s):
- Medium: X
- Location:
- New Orleans, Louisiana
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Self-driving technology companies and the research community are accelerating the pace of use of machine learning longitudinal motion planning (mMP) for autonomous vehicles (AVs). This paper reviews the current state of the art in mMP, with an exclusive focus on its impact on traffic congestion. The paper identifies the availability of congestion scenarios in current datasets, and summarizes the required features for training mMP. For learning methods, the major methods in both imitation learning and non-imitation learning are surveyed. The emerging technologies adopted by some leading AV companies, such as Tesla, Waymo, and Comma.ai, are also highlighted. It is found that: (i) the AV industry has been mostly focusing on the long tail problem related to safety and has overlooked the impact on traffic congestion, (ii) the current public self-driving datasets have not included enough congestion scenarios, and mostly lack the necessary input features/output labels to train mMP, and (iii) although the reinforcement learning approach can integrate congestion mitigation into the learning goal, the major mMP method adopted by industry is still behavior cloning, whose capability to learn a congestion-mitigating mMP remains to be seen. Based on the review, the study identifies the research gaps in current mMP development. Some suggestions for congestion mitigation for future mMP studies are proposed: (i) enrich data collection to facilitate the congestion learning, (ii) incorporate non-imitation learning methods to combine traffic efficiency into a safety-oriented technical route, and (iii) integrate domain knowledge from the traditional car-following theory to improve the string stability of mMP.more » « less
- 
            Abstract For simulation to be an effective tool for the development and testing of autonomous vehicles, the simulator must be able to produce realistic safety-critical scenarios with distribution-level accuracy. However, due to the high dimensionality of real-world driving environments and the rarity of long-tail safety-critical events, how to achieve statistical realism in simulation is a long-standing problem. In this paper, we develop NeuralNDE, a deep learning-based framework to learn multi-agent interaction behavior from vehicle trajectory data, and propose a conflict critic model and a safety mapping network to refine the generation process of safety-critical events, following real-world occurring frequencies and patterns. The results show that NeuralNDE can achieve both accurate safety-critical driving statistics (e.g., crash rate/type/severity and near-miss statistics, etc.) and normal driving statistics (e.g., vehicle speed/distance/yielding behavior distributions, etc.), as demonstrated in the simulation of urban driving environments. To the best of our knowledge, this is the first time that a simulation model can reproduce the real-world driving environment with statistical realism, particularly for safety-critical situations.more » « less
- 
            With emerging vision-based autonomous driving (AD) systems, it becomes increasingly important to have datasets to evaluate their correct operation and identify potential security flaws. However, when collecting a large amount of data, either human experts manually label potentially hundreds of thousands of image frames or systems use machine learning algorithms to label the data, with the hope that the accuracy is good enough for the application. This can become especially problematic when tracking the context information, such as the location and velocity of surrounding objects, useful to evaluate the correctness and improve stability and robustness of the AD systems. In this paper, we introduce DRIVETRUTH, a data collection framework built on CARLA, an open-source simulator for AD research, which constructs datasets with automatically generated accurate object labels, bounding boxes of objects and their contextual information through accessing simulation state and using semantic LiDAR raycasts. By leveraging the actual state of the simulation and the agents within it, we guarantee complete accuracy in all labels and gathered contextual information. Further, the use of the simulator provides easily collecting data in diverse environmental conditions and agent behaviors, with lighting, weather, and traffic behavior being configurable within the simulation. Through this effort, we provide users a means to extracting actionable simulated data from CARLA to test and explore attacks and defenses for AD systems.more » « less
- 
            Accurate 3D object detection in real-world environments requires a huge amount of annotated data with high quality. Acquiring such data is tedious and expensive, and often needs repeated effort when a new sensor is adopted or when the detector is deployed in a new environment. We investigate a new scenario to construct 3D object detectors: learning from the predictions of a nearby unit that is equipped with an accurate detector. For example, when a self-driving car enters a new area, it may learn from other traffic participants whose detectors have been optimized for that area. This setting is label-efficient, sensor-agnostic, and communication-efficient: nearby units only need to share the predictions with the ego agent (e.g., car). Naively using the received predictions as ground-truths to train the detector for the ego car, however, leads to inferior performance. We systematically study the problem and identify viewpoint mismatches and mislocalization (due to synchronization and GPS errors) as the main causes, which unavoidably result in false positives, false negatives, and inaccurate pseudo labels. We propose a distance-based curriculum, first learning from closer units with similar viewpoints and subsequently improving the quality of other units' predictions via self-training. We further demonstrate that an effective pseudo label refinement module can be trained with a handful of annotated data, largely reducing the data quantity necessary to train an object detector. We validate our approach on the recently released real-world collaborative driving dataset, using reference cars' predictions as pseudo labels for the ego car. Extensive experiments including several scenarios (e.g., different sensors, detectors, and domains) demonstrate the effectiveness of our approach toward label-efficient learning of 3D perception from other units' predictions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    