skip to main content


Title: Piezo1 as a force-through-membrane sensor in red blood cells
Piezo1 is the stretch activated Ca2+channel in red blood cells that mediates homeostatic volume control. Here, we study the organization of Piezo1 in red blood cells using a combination of super-resolution microscopy techniques and electron microscopy. Piezo1 adopts a non-uniform distribution on the red blood cell surface, with a bias toward the biconcave ‘dimple’. Trajectories of diffusing Piezo1 molecules, which exhibit confined Brownian diffusion on short timescales and hopping on long timescales, also reflect a bias toward the dimple. This bias can be explained by ‘curvature coupling’ between the intrinsic curvature of the Piezo dome and the curvature of the red blood cell membrane. Piezo1 does not form clusters with itself, nor does it colocalize with F-actin, Spectrin, or the Gardos channel. Thus, Piezo1 exhibits the properties of a force-through-membrane sensor of curvature and lateral tension in the red blood cell.  more » « less
Award ID(s):
2051681 1554716
NSF-PAR ID:
10477615
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
eLife
Date Published:
Journal Name:
eLife
Volume:
11
ISSN:
2050-084X
Page Range / eLocation ID:
e82621
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Introduction: Vaso-occlusive crises (VOCs) are a leading cause of morbidity and early mortality in individuals with sickle cell disease (SCD). These crises are triggered by sickle red blood cell (sRBC) aggregation in blood vessels and are influenced by factors such as enhanced sRBC and white blood cell (WBC) adhesion to inflamed endothelium. Advances in microfluidic biomarker assays (i.e., SCD Biochip systems) have led to clinical studies of blood cell adhesion onto endothelial proteins, including, fibronectin, laminin, P-selectin, ICAM-1, functionalized in microchannels. These microfluidic assays allow mimicking the physiological aspects of human microvasculature and help characterize biomechanical properties of adhered sRBCs under flow. However, analysis of the microfluidic biomarker assay data has so far relied on manual cell counting and exhaustive visual morphological characterization of cells by trained personnel. Integrating deep learning algorithms with microscopic imaging of adhesion protein functionalized microfluidic channels can accelerate and standardize accurate classification of blood cells in microfluidic biomarker assays. Here we present a deep learning approach into a general-purpose analytical tool covering a wide range of conditions: channels functionalized with different proteins (laminin or P-selectin), with varying degrees of adhesion by both sRBCs and WBCs, and in both normoxic and hypoxic environments. Methods: Our neural networks were trained on a repository of manually labeled SCD Biochip microfluidic biomarker assay whole channel images. Each channel contained adhered cells pertaining to clinical whole blood under constant shear stress of 0.1 Pa, mimicking physiological levels in post-capillary venules. The machine learning (ML) framework consists of two phases: Phase I segments pixels belonging to blood cells adhered to the microfluidic channel surface, while Phase II associates pixel clusters with specific cell types (sRBCs or WBCs). Phase I is implemented through an ensemble of seven generative fully convolutional neural networks, and Phase II is an ensemble of five neural networks based on a Resnet50 backbone. Each pixel cluster is given a probability of belonging to one of three classes: adhered sRBC, adhered WBC, or non-adhered / other. Results and Discussion: We applied our trained ML framework to 107 novel whole channel images not used during training and compared the results against counts from human experts. As seen in Fig. 1A, there was excellent agreement in counts across all protein and cell types investigated: sRBCs adhered to laminin, sRBCs adhered to P-selectin, and WBCs adhered to P-selectin. Not only was the approach able to handle surfaces functionalized with different proteins, but it also performed well for high cell density images (up to 5000 cells per image) in both normoxic and hypoxic conditions (Fig. 1B). The average uncertainty for the ML counts, obtained from accuracy metrics on the test dataset, was 3%. This uncertainty is a significant improvement on the 20% average uncertainty of the human counts, estimated from the variance in repeated manual analyses of the images. Moreover, manual classification of each image may take up to 2 hours, versus about 6 minutes per image for the ML analysis. Thus, ML provides greater consistency in the classification at a fraction of the processing time. To assess which features the network used to distinguish adhered cells, we generated class activation maps (Fig. 1C-E). These heat maps indicate the regions of focus for the algorithm in making each classification decision. Intriguingly, the highlighted features were similar to those used by human experts: the dimple in partially sickled RBCs, the sharp endpoints for highly sickled RBCs, and the uniform curvature of the WBCs. Overall the robust performance of the ML approach in our study sets the stage for generalizing it to other endothelial proteins and experimental conditions, a first step toward a universal microfluidic ML framework targeting blood disorders. Such a framework would not only be able to integrate advanced biophysical characterization into fast, point-of-care diagnostic devices, but also provide a standardized and reliable way of monitoring patients undergoing targeted therapies and curative interventions, including, stem cell and gene-based therapies for SCD. Disclosures Gurkan: Dx Now Inc.: Patents & Royalties; Xatek Inc.: Patents & Royalties; BioChip Labs: Patents & Royalties; Hemex Health, Inc.: Consultancy, Current Employment, Patents & Royalties, Research Funding. 
    more » « less
  2. Abstract

    Traumatic brain injury (TBI) elevates Abeta (Aβ) peptides in the brain and cerebral spinal fluid. Aβ peptides are amphipathic molecules that can modulate membrane mechanics. Because the mechanosensitive cation channel PIEZO1 is gated by membrane tension and curvature, it prompted us to test the effects of Aβ on PIEZO1. Using precision fluid shear stress as a stimulus, we found that Aβmonomersinhibit PIEZO1 at femtomolar to picomolar concentrations. The Aβ oligomers proved much less potent. The effect of Aβs on Piezo gating did not involve peptide-protein interactions since the D and L enantiomers had similar effects. Incubating a fluorescent derivative of Aβ and a fluorescently tagged PIEZO1, we showed that Aβ can colocalize with PIEZO1, suggesting that they both had an affinity for particular regions of the bilayer. To better understand the PIEZO1 inhibitory effects of Aβ, we examined their effect on wound healing. We observed that over-expression of PIEZO1 in HEK293 cellsincreasedcell migration velocity ~10-fold, and both enantiomeric Aβ peptides and GsMTx4 independently inhibited migration, demonstrating involvement of PIEZO1 in cell motility. As part of the motility study we examined the correlation of PIEZO1 function with tension in the cytoskeleton using a genetically encoded fluorescent stress probe. Aβ peptidesincreasedresting stress in F-actin, and is correlated with Aβ block of PIEZO1-mediated Ca2+influx. Aβ inhibition of PIEZO1 in the absence ofstereospecificpeptide-protein interactions shows that Aβ peptides modulate both cell membrane and cytoskeletal mechanics to control PIEZO1-triggered Ca2+influx.

     
    more » « less
  3. The splenic interendothelial slits fulfill the essential function of continuously filtering red blood cells (RBCs) from the bloodstream to eliminate abnormal and aged cells. To date, the process by which 8μm RBCs pass through 0.3μm-wide slits remains enigmatic. Does the slit caliber increase during RBC passage as sometimes suggested? Here, we elucidated the mechanisms that govern the RBC retention or passage dynamics in slits by combining multiscale modeling, live imaging, and microfluidic experiments on an original device with submicron-wide physiologically calibrated slits. We observed that healthy RBCs pass through 0.28μm-wide rigid slits at 37 °C. To achieve this feat, they must meet two requirements. Geometrically, their surface area-to-volume ratio must be compatible with a shape in two tether-connected equal spheres. Mechanically, the cells with a low surface area-to-volume ratio (28% of RBCs in a 0.4μm-wide slit) must locally unfold their spectrin cytoskeleton inside the slit. In contrast, activation of the mechanosensitive PIEZO1 channel is not required. The RBC transit time through the slits follows a1 and3 power law with in-slit pressure drop and slip width, respectively. This law is similar to that of a Newtonian fluid in a two-dimensional Poiseuille flow, showing that the dynamics of RBCs is controlled by their cytoplasmic viscosity. Altogether, our results show that filtration through submicron-wide slits is possible without further slit opening. Furthermore, our approach addresses the critical need for in vitro evaluation of splenic clearance of diseased or engineered RBCs for transfusion and drug delivery.

     
    more » « less
  4. Key points

    Trabecular meshwork (TM) is a highly mechanosensitive tissue in the eye that regulates intraocular pressure through the control of aqueous humour drainage.

    Its dysfunction underlies the progression of glaucoma but neither the mechanisms through which TM cells sense pressure nor their role in aqueous humour outflow are understood at the molecular level.

    We identified the Piezo1 channel as a key TM transducer of tensile stretch, shear flow and pressure.

    Its activation resulted in intracellular signals that altered organization of the cytoskeleton and cell‐extracellular matrix contacts and modulated the trabecular component of aqueous outflow whereas another channel, TRPV4, mediated a delayed mechanoresponse.

    This study helps elucidate basic mechanotransduction properties that may contribute to intraocular pressure regulation in the vertebrate eye.

    Abstract

    Chronic elevations in intraocular pressure (IOP) can cause blindness by compromising the function of trabecular meshwork (TM) cells in the anterior eye, but how these cells sense and transduce pressure stimuli is poorly understood. Here, we demonstrate functional expression of two mechanically activated channels in human TM cells. Pressure‐induced cell stretch evoked a rapid increase in transmembrane current that was inhibited by antagonists of the mechanogated channel Piezo1, Ruthenium Red and GsMTx4, and attenuated in Piezo1‐deficient cells. The majority of TM cells exhibited a delayed stretch‐activated current that was mediated independently of Piezo1 by TRPV4 (transient receptor potential cation channel, subfamily V, member 4) channels. Piezo1 functions as the principal TM transducer of physiological levels of shear stress, with both shear and the Piezo1 agonist Yoda1 increasing the number of focal cell‐matrix contacts. Analysis of TM‐dependent fluid drainage from the anterior eye showed significant inhibition by GsMTx4. Collectively, these results suggest that TM mechanosensitivity utilizes kinetically, regulatory and functionally distinct pressure transducers to inform the cells about force‐sensing contexts. Piezo1‐dependent control of shear flow sensing, calcium homeostasis, cytoskeletal dynamics and pressure‐dependent outflow suggests potential for a novel therapeutic target in treating glaucoma.

     
    more » « less
  5. Hematological analysis, via a complete blood count (CBC) and microscopy, is critical for screening, diagnosing, and monitoring blood conditions and diseases but requires complex equipment, multiple chemical reagents, laborious system calibration and procedures, and highly trained personnel for operation. Here we introduce a hematological assay based on label-free molecular imaging with deep-ultraviolet microscopy that can provide fast quantitative information of key hematological parameters to facilitate and improve hematological analysis. We demonstrate that this label-free approach yields 1) a quantitative five-part white blood cell differential, 2) quantitative red blood cell and hemoglobin characterization, 3) clear identification of platelets, and 4) detailed subcellular morphology. Analysis of tens of thousands of live cells is achieved in minutes without any sample preparation. Finally, we introduce a pseudocolorization scheme that accurately recapitulates the appearance of cells under conventional staining protocols for microscopic analysis of blood smears and bone marrow aspirates. Diagnostic efficacy is evaluated by a panel of hematologists performing a blind analysis of blood smears from healthy donors and thrombocytopenic and sickle cell disease patients. This work has significant implications toward simplifying and improving CBC and blood smear analysis, which is currently performed manually via bright-field microscopy, and toward the development of a low-cost, easy-to-use, and fast hematological analyzer as a point-of-care device and for low-resource settings.

     
    more » « less