A known trinuclear structure was used to design the heterobimetallic mixed‐valent, mixed‐ligand molecule [CoII(hfac)3−Na−CoIII(acac)3] (
With the goal of generating hetero‐redox levels on metals as well as on nitric oxide (NO), metallodithiolate (N2S2)CoIII(NO−), N2S2=
- NSF-PAR ID:
- 10477625
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Science
- ISSN:
- 2198-3844
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract 1 ). This was used as a template structure to develop heterotrimetallic molecules [CoII(hfac)3−Na−FeIII(acac)3] (2 ) and [NiII(hfac)3−Na−CoIII(acac)3] (3 ) via isovalent site‐specific substitution at either of the cobalt positions. Diffraction methods, synchrotron resonant diffraction, and multiple‐wavelength anomalous diffraction were applied beyond simple structural investigation to provide an unambiguous assignment of the positions and oxidation states for the periodic table neighbors in the heterometallic assemblies. Molecules of2 and3 are true heterotrimetallic rather than a statistical mixture of two heterobimetallic counterparts. Trinuclear platform1 exhibits flexibility in accommodating a variety of di‐ and trivalent metals, which can be further utilized in the design of molecular precursors for the NaMM′O4functional oxide materials. -
Abstract A known trinuclear structure was used to design the heterobimetallic mixed‐valent, mixed‐ligand molecule [CoII(hfac)3−Na−CoIII(acac)3] (
1 ). This was used as a template structure to develop heterotrimetallic molecules [CoII(hfac)3−Na−FeIII(acac)3] (2 ) and [NiII(hfac)3−Na−CoIII(acac)3] (3 ) via isovalent site‐specific substitution at either of the cobalt positions. Diffraction methods, synchrotron resonant diffraction, and multiple‐wavelength anomalous diffraction were applied beyond simple structural investigation to provide an unambiguous assignment of the positions and oxidation states for the periodic table neighbors in the heterometallic assemblies. Molecules of2 and3 are true heterotrimetallic rather than a statistical mixture of two heterobimetallic counterparts. Trinuclear platform1 exhibits flexibility in accommodating a variety of di‐ and trivalent metals, which can be further utilized in the design of molecular precursors for the NaMM′O4functional oxide materials. -
Abstract A metal/ligand cooperative approach to the reduction of small molecules by metal silylene complexes (R2Si=M) is demonstrated, whereby silicon activates the incoming substrate and mediates net two‐electron transformations by one‐electron redox processes at two metal centers. An appropriately tuned cationic pincer cobalt(I) complex, featuring a central silylene donor, reacts with CO2to afford a bimetallic siloxane, featuring two CoIIcenters, with liberation of CO; reaction of the silylene complex with ethylene yields a similar bimetallic product with an ethylene bridge. Experimental and computational studies suggest a plausible mechanism proceeding by [2+2] cycloaddition to the silylene complex, which is quite sensitive to the steric environment. The CoII/CoIIproducts are reactive to oxidation and reduction. Taken together, these findings demonstrate a strategy for metal/ligand cooperative small‐molecule activation that is well‐suited to 3
d metals. -
Abstract A metal/ligand cooperative approach to the reduction of small molecules by metal silylene complexes (R2Si=M) is demonstrated, whereby silicon activates the incoming substrate and mediates net two‐electron transformations by one‐electron redox processes at two metal centers. An appropriately tuned cationic pincer cobalt(I) complex, featuring a central silylene donor, reacts with CO2to afford a bimetallic siloxane, featuring two CoIIcenters, with liberation of CO; reaction of the silylene complex with ethylene yields a similar bimetallic product with an ethylene bridge. Experimental and computational studies suggest a plausible mechanism proceeding by [2+2] cycloaddition to the silylene complex, which is quite sensitive to the steric environment. The CoII/CoIIproducts are reactive to oxidation and reduction. Taken together, these findings demonstrate a strategy for metal/ligand cooperative small‐molecule activation that is well‐suited to 3
d metals. -
Abstract Literature reports have demonstrated that Schiff-base-type ligands can serve as robust platforms for the synthesis of heterobimetallic complexes containing transition metals and the uranyl dication (UO22+). However, efforts have not advanced to include either synthesis of complexes containing second- or third-row transition metals or measurement of the redox properties of the corresponding heterobimetallic complexes, despite the significance of actinide redox in studies of nuclear fuel reprocessing and separations. Here, metalloligands denoted [Ni], [Pd], and [Pt] that contain the corresponding Group 10 metals have been prepared and a synthetic strategy to access species incorporating the uranyl ion (UO22+) has been explored, toward the goal of understanding how the secondary metals could tune uranium-centered redox chemistry. The synthesis and redox characterization of the bimetallic complex [Ni,UO2] was achieved, and factors that appear to govern extension of the chosen synthetic strategy to complexes with Pd and Pt are reported here. Infrared and solid-state structural data from X-ray diffraction analysis of the metalloligands [Pd] and [Pt] show that the metal centers in these complexes adopt the expected square planar geometries, while the structure of the bimetallic [Ni,UO2] reveals that the uranyl moiety influences the coordination environment of Ni(II), including inducement of a puckering of the ligand backbone of the complex in which the phenyl rings fold around the nickel-containing core in an umbrella-shaped fashion. Cyclic voltammetric data collected on the heterobimetallic complexes of both Ni(II) and Pd(II) provide evidence for uranium-centered redox cycling, as well as for the accessibility of other reductions that could be associated with Ni(II) or the organic ligand backbone. Taken together, these results highlight the unique redox behaviors that can be observed in multimetallic systems and design concepts that could be useful for accessing tunable multimetallic complexes containing the uranyl dication.