skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Divergent patterns of zooplankton connectivity in the epipelagic and mesopelagic zones of the eastern North Pacific
Abstract Due to historical under‐sampling of the deep ocean, the distributional ranges of mesopelagic zooplankton are not well documented, leading to uncertainty about the mechanisms that shape midwater zooplankton community composition. Using a combination of DNA metabarcoding (18S‐V4 and mtCOI) and trait‐based analysis, we characterized zooplankton diversity and community composition in the upper 1000 m of the northeast Pacific Ocean. We tested whether the North Pacific Transition Zone is a biogeographic boundary region for mesopelagic zooplankton. We also tested whether zooplankton taxa occupying different vertical habitats and exhibiting different ecological traits differed in the ranges of temperature, Chl‐a, and dissolved oxygen conditions inhabited. The depth of the maximum taxonomic richness deepened with increasing latitude in the North Pacific. Community similarity in the mesopelagic zone also increased in comparison with the epipelagic zone, and no evidence was found for a biogeographic boundary between previously delineated mesopelagic biogeochemical provinces. Epipelagic zooplankton exhibited broader temperature and Chl‐aranges than mesopelagic taxa. Within the epipelagic, taxa with broader temperature and Chl‐aranges also had broader distributional ranges. However, mesopelagic taxa were distributed across wider dissolved oxygen ranges, and within the mesopelagic, only oxygen ranges covaried with distributional ranges. Environmental and distributional ranges also varied among traits, both for epipelagic taxa and mesopelagic taxa. The strongest differences in both environmental and distributional ranges were observed for taxa with or without diel vertical migration behavior. Our results suggest that species traits can influence the differential effects of physical dispersal and environmental selection in shaping biogeographic distributions.  more » « less
Award ID(s):
1948162
PAR ID:
10477631
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
13
Issue:
11
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Increasing deoxygenation (loss of oxygen) of the ocean, including expansion of oxygen minimum zones (OMZs), is a potentially important consequence of global warming. We examined present-day variability of vertical distributions of 23 calanoid copepod species in the Eastern Tropical North Pacific (ETNP) living in locations with different water column oxygen profiles and OMZ intensity (lowest oxygen concentration and its vertical extent in a profile). Copepods and hydrographic data were collected in vertically stratified day and night MOCNESS (Multiple Opening/Closing Net and Environmental Sensing System) tows (0–1000 m) during four cruises over a decade (2007– 2017) that sampled four ETNP locations: Costa Rica Dome, Tehuantepec Bowl, and two oceanic sites further north (21– 22 N) off Mexico. The sites had different vertical oxygen profiles: some with a shallow mixed layer, abrupt thermocline, and extensive very low oxygen OMZ core; and others with a more gradual vertical development of the OMZ (broad mixed layer and upper oxycline zone) and a less extensive OMZ core where oxygen was not as low. Calanoid copepod species (including examples from the genera Eucalanus, Pleuromamma, and Lucicutia) demonstrated different distributional strategies (implying different physiological characteristics) associated with this variability. We identified sets of species that (1) changed their vertical distributions and depth of maximum abundance associated with the depth and intensity of the OMZ and its oxycline inflection points; (2) shifted their depth of diapause; (3) adjusted their diel vertical migration, especially the nighttime upper depth; or (4) expanded or contracted their depth range within the mixed layer and upper part of the thermocline in association with the thickness of the aerobic epipelagic zone (habitat compression concept). These distribution depths changed by tens to hundreds of meters depending on the species, oxygen profile, and phenomenon. For example, at the lower oxycline, the depth of maximum abundance for Lucicutia hulsemannae shifted from  600 to  800 m, and the depth of diapause for Eucalanus inermis shifted from  500 to  775 m, in an expanded OMZ compared to a thinner OMZ, but remained at similar low oxygen levels in both situations. These species or life stages are examples of “hypoxiphilic” taxa. For the migrating copepod Pleuromamma abdominalis, its nighttime depth was shallow ( 20 m) when the aerobic mixed layer was thin and the low-oxygen OMZ broad, but it was much deeper ( 100 m) when the mixed layer and higher oxygen extended deeper; daytime depth in both situations was  300 m. Because temperature decreased with depth, these distributional depth shifts had metabolic implications. The upper ocean to mesopelagic depth range encompasses a complex interwoven ecosystem characterized by intricate relationships among its inhabitants and their environment. It is a critically important zone for oceanic biogeochemical and export processes and hosts key food web components for commercial fisheries. Among the zooplankton, there will likely be winners and losers with increasing ocean deoxygenation as species cope with environmental change. Changes in individual copepod species abundances, vertical distributions, and life history strategies may create potential perturbations to these intricate food webs and processes. Present-day variability provides a window into future scenarios and potential effects of deoxygenation. 
    more » « less
  2. Abstract In the Eastern Tropical North Pacific Oxygen Minimum Zone (ETNP‐OMZ), fish larvae undergo development amidst highly variable dissolved oxygen environments. As OMZs expand, understanding the implications of low‐oxygen environments on fish development becomes increasingly relevant for fisheries management and ecosystem modeling. Using horizontal zooplankton tows to track five oxygen levels (oxic [200 μmol/kg], hypoxic [100 μmol/kg] suboxic [10 μmol/kg], anoxic [<1 μmol/kg], and deep [10 μmol/kg at ~ 1000 m depth]), this study analyzed the three‐dimensional distribution of fish larvae and adults across the ETNP‐OMZ. Results revealed a wide midwater anoxic core, extending from Costa Rica to Baja California, that was almost devoid of fish larvae (< 1 larvae/1000 m3). Early larval stages primarily inhabited the oxic and hypoxic levels above the core, while postflexion and transformation stages occurred across a wider oxygen gradient, including the deep level below the anoxic core. Epipelagic species (e.g.,Auxissp.) were predominantly found in the surface oxic level, whereas coastal‐demersal species (e.g.,Bregmaceros bathymaster,Ophidionspp.) were prevalent in the hypoxic level above the core. Meso‐bathypelagic species (e.g.,Diogenichthys laternatus,Cyclothonespp.) were present throughout the study area, including below the anoxic core as transformation larvae and juveniles. These findings indicate that a vertical expansion of anoxic waters in OMZs could further constrain the habitat of epipelagic species, while also affecting the ontogenic vertical movements of meso‐bathypelagic species. 
    more » « less
  3. Abstract The Rhizaria is a super‐group of amoeboid protists with ubiquitous distributions, from the euphotic zone to the twilight zone and beyond. While rhizarians have been recently described as important contributors to both biogenic silica and carbon fluxes, we lack the most basic information about their ecological habitats and preferences. Here, using in situ imaging (Underwater Vision Profiler 5), we characterize the vertical ecological niches of different test‐bearing pelagic rhizarian taxa in the southernCalifornia Current Ecosystem. We define three vertical layers between 0 and 500 m occupied, respectively, by (1) surface dwelling and mostly symbiont‐bearing rhizarians (Acantharia and Collodaria), (2) flux‐feeding phaeodarians in the lower epipelagic (100–200 m), and (3) Foraminifera and Phaeodaria populations adjacent to the oxygen minimum zone. We then use Generalized Additive Models to analyze the response of each rhizarian category to a suite of environmental variables. The models explain between 9% and 93% of the total variance observed for the different groups. While temperature and the depth of the deep chlorophyll maximum appear as the main abiotic factors influencing populations in the upper 200 m, dissolved silicon concentration is related to the abundance of mesopelagic phaeodarians, though it explains only a portion of the variance. The importance of biotic interactions (e.g., prey availability, predation, parasitism, symbiosis) is still to be considered, in order to fully incorporate the dynamics of test‐bearing pelagic rhizarians in ecological and biogeochemical models. 
    more » « less
  4. Abstract Although the mesopelagic zone occupies a substantial volume of the world’s oceans, our results suggest that the livable portion may compress vertically by ~ 40 m or ~ 39% by the end of the century. Using an ensemble of three downscaled climate projections from a high emissions scenario, we evaluated the connection between anthropogenic greenhouse gas emissions and changes in light and oxygen at depth, which influence the upper and lower limits of mesopelagic habitat in the central California Current. Although the model projects a small deepening (~ 2 m) of the upper light boundary consistent with increased stratification and reduced upper ocean productivity, the main driver of vertical mesopelagic habitat compression is the significant shoaling (by ~ 44 m) of the hypoxic boundary over the course of the 21st century. Differences in dissolved oxygen across ensemble members highlight the potential influence of equatorial dynamics and the California Undercurrent in constraining the future availability of mesopelagic habitat along the U.S. west coast. Mesopelagic ecosystems connect the surface ocean to the deep sea, and a projected decrease in the vertical extent of mesopelagic habitat could have cascading effects on a broader range of marine ecosystem processes and carbon export. 
    more » « less
  5. Abstract The effects of environmental change on zooplankton communities, and more broadly, pelagic ecosystems are difficult to predict due to the high diversity of ecological strategies and complex interspecific interactions within the zooplankton. Trait‐based approaches can define zooplankton functional groups with distinct responses to environmental change. Analyses across multiple mesozooplankton groups can help identify key organizing traits. Here, we use the pronounced cross‐shore environmental gradient within the California Current Ecosystem in a space‐for‐time substitution to test potential effects of ocean warming and increased stratification on zooplankton communities. Along a horizontal gradient in sea‐surface temperature, water column stratification, and light attenuation, we test whether there are changes in zooplankton species composition, trait composition, and vertical habitat use. We employ DNA metabarcoding at two loci (18S‐V4 and COI) and digital ZooScan imaging of zooplankton sampled in a Lagrangian manner. We find that vertical distributions of many mesozooplankton taxa shift to deeper depths in the cross‐shore direction, and light attenuation is the strongest predictor of magnitude of change. Vertical habitat shifts vary among functional groups, with changes in vertical distribution most pronounced among carnivorous taxa. Herbivorous taxa remain associated with the chlorophyll maximum, especially in clear offshore waters. Our results suggest that increased stratification of this ocean region will lead to deeper depths occupied by some components of epipelagic mesozooplankton communities, and may result in zooplankton communities with more specialized feeding strategies, increased egg brooding, and more asexual reproduction. 
    more » « less