skip to main content


Title: JWST Reveals Widespread CO Ice and Gas Absorption in the Galactic Center Cloud G0.253+0.016
Abstract

We report JWST NIRCam observations of G0.253+0.016, the molecular cloud in the Central Molecular Zone known as “The Brick,” with the F182M, F187N, F212N, F410M, F405N, and F466N filters. We catalog 56,146 stars detected in all six filters using thecrowdsourcepackage. Stars within and behind The Brick exhibit prodigious absorption in the F466N filter that is produced by a combination of CO ice and gas. In support of this conclusion, and as a general resource, we present models of CO gas and ice and CO2ice in the F466N, F470N, and F410M filters. Both CO gas and ice contribute to the observed stellar colors. We show, however, that CO gas does not absorb the Pfβand Huϵlines in F466N, but that these lines show excess absorption, indicating that CO ice is present and contributes to observed F466N absorption. The most strongly absorbed stars in F466N are extincted by ∼2 mag, corresponding to >80% flux loss. This high observed absorption requires very high column densities of CO, and thus a total CO column that is in tension with standard CO abundance and/or gas-to-dust ratios. This result suggests the CO/H2ratio and dust-to-gas ratio are greater in the Galactic Center than in the Galactic disk. Ice and/or gas absorption is observed even in the cloud outskirts, implying that additional caution is needed when interpreting stellar photometry in filters that overlap with ice bands throughout galactic centers.

 
more » « less
Award ID(s):
2142300
NSF-PAR ID:
10477664
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
959
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 36
Size(s):
["Article No. 36"]
Sponsoring Org:
National Science Foundation
More Like this
  1. We present Atacama Large Millimeter/submillimeter Array (ALMA) sub-kiloparsec- to kiloparsec-scale resolution observations of the [C II], CO (9–8), and OH+(11–01) lines along with their dust continuum emission toward the far-infrared (FIR) luminous quasar SDSS J231038.88+185519.7 atz = 6.0031, to study the interstellar medium distribution, the gas kinematics, and the quasar-host system dynamics. We decompose the intensity maps of the [C II] and CO (9–8) lines and the dust continuum with two-dimensional elliptical Sérsic models. The [C II] brightness follows a flat distribution with a Sérsic index of 0.59. The CO (9–8) line and the dust continuum can be fit with an unresolved nuclear component and an extended Sérsic component with a Sérsic index of ∼1, which may correspond to the emission from an active galactic nucleus dusty molecular torus and a quasar host galaxy, respectively. The different [C II] spatial distribution may be due to the effect of the high dust opacity, which increases the FIR background radiation on the [C II] line, especially in the galaxy center, significantly suppressing the [C II] emission profile. The dust temperature drops with distance from the center. The effective radius of the dust continuum is smaller than that of the line emission and the dust mass surface density, but is consistent with that of the star formation rate surface density. This may indicate that the dust emission is a less robust tracer of the dust and gas distribution but is a decent tracer of the obscured star formation activity. The OH+(11–01) line shows a P-Cygni profile with an absorption at ∼–400 km s−1, which may indicate an outflow with a neutral gas mass of (6.2 ± 1.2)×108Malong the line of sight. We employed a three-dimensional tilted ring model to fit the [C II] and CO (9–8) data cubes. The two lines are both rotation dominated and trace identical disk geometries and gas motions. This suggest that the [C II] and CO (9–8) gas are coplanar and corotating in this quasar host galaxy. The consistent circular velocities measured with [C II] and CO (9–8) lines indicate that these two lines trace a similar gravitational potential. We decompose the circular rotation curve measured from the kinematic model fit to the [C II] line into four matter components (black hole, stars, gas, and dark matter). The quasar-starburst system is dominated by baryonic matter inside the central few kiloparsecs. We constrain the black hole mass to be 2.97+0.51-0.77 × 109M; this is the first time that the dynamical mass of a black hole has been measured atz ∼ 6. This mass is consistent with that determined using the scaling relations from quasar emission lines. A massive stellar component (on the order of 109M) may have already existed when the Universe was only ∼0.93 Gyr old. The relations between the black hole mass and the baryonic mass of this quasar indicate that the central supermassive black hole may have formed before its host galaxy.

     
    more » « less
  2. Water vapor (H2O) is one of the brightest molecular emitters after carbon monoxide (CO) in galaxies with high infrared (IR) luminosity, allowing us to investigate the warm and dense phase of the interstellar medium (ISM) where star formation occurs. However, due to the complexity of its radiative spectrum, H2O is not frequently exploited as an ISM tracer in distant galaxies. Therefore, H2O studies of the warm and dense gas at high-zremain largely unexplored. In this work, we present observations conducted with the Northern Extended Millimeter Array (NOEMA) toward threez > 6 IR-bright quasarsJ2310+1855,J1148+5251, andJ0439+1634targeted in their multiple para- and ortho-H2O transitions (312 − 303, 111 − 000, 220 − 211, and 422 − 413), as well as their far-IR (FIR) dust continuum. By combining our data with previous measurements from the literature, we estimated the dust masses and temperatures, continuum optical depths, IR luminosities, and star formation rates (SFR) from the FIR continuum. We modeled the H2O lines using the MOLPOP-CEP radiative transfer code, finding that water vapor lines in our quasar host galaxies are primarily excited in the warm, dense (with a gas kinetic temperature and density ofTkin = 50 K,nH2 ∼ 104.5 − 105 cm−3) molecular medium with a water vapor column density ofNH2O ∼ 2 × 1017 − 3 × 1018 cm−3. High-JH2O lines are mainly radiatively pumped by the intense optically-thin far-IR radiation field associated with a warm dust component at temperatures ofTdust ∼ 80 − 190 K that account for < 5 − 10% of the total dust mass. In the case of J2310+1855, our analysis points to a relatively high value of the continuum optical depth at 100 μm (τ100 ∼ 1). Our results are in agreement with expectations based on the H2O spectral line energy distribution of local and high-zultra-luminous IR galaxies and active galactic nuclei (AGN). The analysis of the Boltzmann diagrams highlights the interplay between collisions and IR pumping in populating the high H2O energy levels and it allows us to directly compare the excitation conditions in the targeted quasar host galaxies. In addition, the observations enable us to sample the high-luminosity part of the H2O–total-IR (TIR) luminosity relations (LH2O − LTIR). Overall, our results point to supralinear trends that suggest H2O–TIR relations are likely driven by IR pumping, rather than the mere co-spatiality between the FIR continuum- and line-emitting regions. The observedLH2O/LTIRratios in ourz > 6 quasars do not show any strong deviations with respect to those measured in star-forming galaxies and AGN at lower redshifts. This supports the notion that H2O can be likely used to trace the star formation activity buried deep within the dense molecular clouds.

     
    more » « less
  3. Abstract

    Spectroscopic studies of extreme-ionization galaxies (EIGs) are critical to our understanding of exotic systems throughout cosmic time. These EIGs exhibit spectral features requiring >54.42 eV photons: the energy needed to ionize helium into He2+fully and emit Heiirecombination lines. Spectroscopic studies of EIGs can probe exotic stellar populations or accretion onto intermediate-mass black holes (∼102–105M), which are the possibly key contributors to the reionization of the Universe. To facilitate the use of EIGs as probes of high-ionization systems, we focus on ratios constructed from several rest-frame UV/optical emission lines: [Oiii]λ5008, Hβ, [Neiii]λ3870, [Oii]λλ3727, 3729, and [Nev]λ3427. These lines probe the relative intensity at energies of 35.12, 13.62, 40.96, 13.62, and 97.12 eV, respectively, covering a wider range of ionization than traced by other common rest-frame UV/optical techniques. We use the ratios of these lines ([Nev]/[Neiii] ≡ Ne53, [Oiii]/Hβ, and [Neiii]/[Oii]), which are nearby in wavelength, mitigating the effects of dust attenuation and uncertainties in flux calibration. We make predictions from photoionization models constructed fromCloudythat use a broad range of stellar populations and black hole accretion models to explore the sensitivity of these line ratios to changes in the ionizing spectrum. We compare our models to observations from the Hubble Space Telescope and JWST of galaxies with strong high-ionization emission lines atz∼ 0,z∼ 2, and 5 <z< 8.5. We show that the Ne53 ratio can separate galaxies with ionization from “normal” stellar populations from those with active galactic nuclei and even “exotic” Population III models. We introduce new selection methods to identify galaxies with photoionization driven by Population III stars or intermediate-mass black hole accretion disks that could be identified in upcoming high-redshift spectroscopic surveys.

     
    more » « less
  4. Abstract

    We present observations of population anti-inversion in the 31− 40A+transition of CH3OH (methanol) at 107.013831 GHz toward the Galactic center cloud G0.253+0.016 (“The Brick”). Anti-inversion of molecular level populations can result in absorption lines against the cosmic microwave background (CMB) in a phenomenon known as a “dasar.” We model the physical conditions under which the 107 GHz methanol transition dases and determine that dasing occurs at densities below 106cm−3and column densities between 1013and 1016cm−2. We also find that for this transition, dasing does not strongly depend on the gas kinetic temperature. We evaluate the potential of this tool for future deep galaxy surveys. We note that other works have already reported absorption in this transition (e.g., in NGC 253), but we provide the first definitive evidence that it is absorption against the CMB rather than against undetected continuum sources.

     
    more » « less
  5. ABSTRACT

    Radiation pressure on dust is an important feedback process around star clusters and may eject gas from bright subregions in star-forming galaxies. The Eddington ratio has previously been constructed for galaxy-averaged observations, individual star clusters, and Galactic H ii regions. Here we assess the role of radiation pressure in thousands of subregions across two local star-forming galaxies, NGC 6946 and NGC 5194. Using a model for the spectral energy distribution from stellar population synthesis and realistic dust grain scattering and absorption, we compute flux and radiation pressure-mean opacities and population-averaged optical depth 〈τRP〉. Using Monte-Carlo calculations, we assess the momentum coupling through a dusty column to the stellar continuum. Optically-thin regions around young stellar populations are 30–50 times super-Eddington. We calculate the Eddington ratio for the subregions including the local mass of young and old stars and cool atomic and molecular gas. We compute the fraction of the total star formation that is currently super-Eddington, and provide an assessment of the role of radiation pressure in the dusty gas dynamics. Depending on the assumed height of the dusty gas and the age of the stellar population, we find that ∼0–10 per cent of the sightlines are super-Eddington. These regions may be accelerated to ∼5–15 km s−1 by radiation pressure alone. Additionally, our results show that for beamed radiation, the function 1 − exp (−〈τRP〉) is an excellent approximation to the momentum transfer. Opacities and optical depths are tabulated for SEDs of different stellar ages and for continuous star formation.

     
    more » « less