skip to main content


This content will become publicly available on November 28, 2024

Title: Testing the selective sequestration hypothesis: Monarch butterflies preferentially sequester plant defences that are less toxic to themselves while maintaining potency to others
Abstract

Herbivores that sequester toxins are thought to have cracked the code of plant defences. Nonetheless, coevolutionary theory predicts that plants should evolve toxic variants that also negatively impact specialists. We propose and test the selective sequestration hypothesis, that specialists preferentially sequester compounds that are less toxic to themselves while maintaining toxicity to enemies. Using chemically distinct plants, we show that monarch butterflies sequester only a subset of cardenolides from milkweed leaves that are less potent against their target enzyme (Na+/K+‐ATPase) compared to several dominant cardenolides from leaves. However, sequestered compounds remain highly potent against sensitive Na+/K+‐ATPases found in most predators. We confirmed this differential toxicity with mixtures of purified cardenolides from leaves and butterflies. The genetic basis of monarch adaptation to sequestered cardenolides was also confirmed with transgenicDrosophilathat were CRISPR‐edited with the monarch's Na+/K+‐ATPase. Thus, the monarch's selective sequestration appears to reduce self‐harm while maintaining protection from enemies.

 
more » « less
Award ID(s):
2209762
NSF-PAR ID:
10477777
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
Volume:
27
Issue:
1
ISSN:
1461-023X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Environmental clines in organismal defensive traits are usually attributed to stronger selection by enemies at lower latitudes or near the host’s range center. Nonetheless, little functional evidence has supported this hypothesis, especially for coevolving plants and herbivores. We quantified cardenolide toxins in seeds of 24 populations of common milkweed ( Asclepias syriaca ) across 13 degrees of latitude, revealing a pattern of increasing cardenolide concentrations toward the host's range center. The unusual nitrogen-containing cardenolide labriformin was an exception and peaked at higher latitudes. Milkweed seeds are eaten by specialist lygaeid bugs that are even more tolerant of cardenolides than the monarch butterfly, concentrating most cardenolides (but not labriformin) from seeds into their bodies. Accordingly, whether cardenolides defend seeds against these specialist bugs is unclear. We demonstrate that Oncopeltus fasciatus (Lygaeidae) metabolized two major compounds (glycosylated aspecioside and labriformin) into distinct products that were sequestered without impairing growth. We next tested several isolated cardenolides in vitro on the physiological target of cardenolides (Na + /K + -ATPase); there was little variation among compounds in inhibition of an unadapted Na + /K + -ATPase, but tremendous variation in impacts on that of monarchs and Oncopeltu s. Labriformin was the most inhibitive compound tested for both insects, but Oncopeltus had the greater advantage over monarchs in tolerating labriformin compared to other compounds. Three metabolized (and stored) cardenolides were less toxic than their parent compounds found in seeds. Our results suggest that a potent plant defense is evolving by natural selection along a geographical cline and targets specialist herbivores, but is met by insect tolerance, detoxification, and sequestration. 
    more » « less
  2. Environmental clines in organismal defensive traits are usually attributed to stronger selection by enemies at lower latitudes or near the host’s range center. Nonetheless, little functional evidence has supported this hypothesis, especially for coevolving plants and herbivores. We quantified cardenolide toxins in seeds of 24 populations of common milkweed (Asclepias syriaca) across 13 degrees of latitude, revealing a pattern of increasing cardenolide concentrations toward the host's range center. The unusual nitrogen-containing cardenolide labriformin was an exception and peaked at higher latitudes. Milkweed seeds are eaten by specialist lygaeid bugs that are even more tolerant of cardenolides than the monarch butterfly, concentrating most cardenolides (but not labriformin) from seeds into their bodies. Accordingly, whether cardenolides defend seeds against these specialist bugs is unclear. We demonstrate that Oncopeltus fasciatus (Lygaeidae) metabolized two major compounds (glycosylated aspecioside and labriformin) into distinct products that were sequestered without impairing growth. We next tested several isolated cardenolides in vitro on the physiological target of cardenolides (Na+/K+-ATPase); there was little variation among compounds in inhibition of an unadapted Na+/K+-ATPase, but tremendous variation in impacts on that of monarchs and Oncopeltus. Labriformin was the most inhibitive compound tested for both insects, but Oncopeltus had the greater advantage over monarchs in tolerating labriformin compared to other compounds. Three metabolized (and stored) cardenolides were less toxic than their parent compounds found in seeds. Our results suggest that a potent plant defense is evolving by natural selection along a geographical cline and targets specialist herbivores, but is met by insect tolerance, detoxification, and sequestration. 
    more » « less
  3. In coevolution between plants and insects, reciprocal selection often leads to phenotype matching between chemical defense and herbivore offense. Nonetheless, it is not well understood whether distinct plant parts are differentially defended and how herbivores adapted to those parts cope with tissue-specific defense. Milkweed plants produce a diversity of cardenolide toxins and specialist herbivores have substitutions in their target enzyme (Na + /K + –ATPase), each playing a central role in milkweed–insect coevolution. The four-eyed milkweed beetle ( Tetraopes tetrophthalmus ) is an abundant toxin-sequestering herbivore that feeds exclusively on milkweed roots as larvae and less so on milkweed leaves as adults. Accordingly, we tested the tolerance of this beetle’s Na + /K + –ATPase to cardenolide extracts from roots versus leaves of its main host ( Asclepias syriaca ), along with sequestered cardenolides from beetle tissues. We additionally purified and tested the inhibitory activity of dominant cardenolides from roots (syrioside) and leaves (glycosylated aspecioside). Tetraopes’ enzyme was threefold more tolerant of root extracts and syrioside than leaf cardenolides. Nonetheless, beetle-sequestered cardenolides were more potent than those in roots, suggesting selective uptake or dependence on compartmentalization of toxins away from the beetle’s enzymatic target. Because Tetraopes has two functionally validated amino acid substitutions in its Na + /K + –ATPase compared to the ancestral form in other insects, we compared its cardenolide tolerance to that of wild-type Drosophila and CRISPR-edited Drosophila with Tetraopes ’ Na + /K + –ATPase genotype. Those two amino acid substitutions accounted for >50% of Tetraopes’ enhanced enzymatic tolerance of cardenolides. Thus, milkweed’s tissue-specific expression of root toxins is matched by physiological adaptations in its specialist root herbivore. 
    more » « less
  4. Abstract

    Herbivorous insects have evolved many mechanisms to overcome plant chemical defences, including detoxification and sequestration. Herbivores may also use toxic plants to reduce parasite infection. Plant toxins could directly interfere with parasites or could enhance endogenous immunity. Alternatively, plant toxins could favour down‐regulation of endogenous immunity by providing an alternative (exogenous) defence against parasitism. However, studies on genomewide transcriptomic responses to plant defences and the interplay between plant toxicity and parasite infection remain rare. Monarch butterflies (Danaus plexippus) are specialist herbivores of milkweeds (Asclepiasspp.), which contain toxic cardenolides. Monarchs have adapted to cardenolides through multiple resistance mechanisms and can sequester cardenolides to defend against bird predators. In addition, high‐cardenolide milkweeds confer monarch resistance to a specialist protozoan parasite (Ophryocystis elektroscirrha). We used this system to study the interplay between the effects of plant toxicity and parasite infection on global gene expression. We compared transcriptional profiles between parasite‐infected and uninfected monarch larvae reared on two milkweed species. Our results demonstrate that monarch differentially express several hundred genes when feeding onA. curassavicaandA. incarnata, two species that differ substantially in cardenolide concentrations. These differentially expressed genes include genes within multiple families of canonical insect detoxification genes, suggesting that they play a role in monarch toxin resistance and sequestration. Interestingly, we found little transcriptional response to infection. However, parasite growth was reduced in monarchs reared onA. curassavica, and in these monarchs, several immune genes were down‐regulated, consistent with the hypothesis that medicinal plants can reduce reliance on endogenous immunity.

     
    more » « less
  5. For highly specialized insect herbivores, plant chemical defenses are often co-opted as cues for oviposition and sequestration. In such interactions, can plants evolve novel defenses, pushing herbivores to trade off benefits of specialization with costs of coping with toxins? We tested how variation in milkweed toxins (cardenolides) impacted monarch butterfly (Danaus plexippus) growth, sequestration, and oviposition when consuming tropical milkweed (Asclepias curassavica), one of two critical host plants worldwide. The most abundant leaf toxin, highly apolar and thiazolidine ring–containing voruscharin, accounted for 40% of leaf cardenolides, negatively predicted caterpillar growth, and was not sequestered. Using whole plants and purified voruscharin, we show that monarch caterpillars convert voruscharin to calotropin and calactin in vivo, imposing a burden on growth. As shown by in vitro experiments, this conversion is facilitated by temperature and alkaline pH. We next employed toxin-target site experiments with isolated cardenolides and the monarch’s neural Na+/K+-ATPase, revealing that voruscharin is highly inhibitory compared with several standards and sequestered cardenolides. The monarch’s typical >50-fold enhanced resistance to cardenolides compared with sensitive animals was absent for voruscharin, suggesting highly specific plant defense. Finally, oviposition was greatest on intermediate cardenolide plants, supporting the notion of a trade-off between benefits and costs of sequestration for this highly specialized herbivore. There is apparently ample opportunity for continued coevolution between monarchs and milkweeds, although the diffuse nature of the interaction, due to migration and interaction with multiple milkweeds, may limit the ability of monarchs to counteradapt.

     
    more » « less