skip to main content


This content will become publicly available on December 1, 2024

Title: Oceanic and Continental Lithospheric Mantle in the 1.95-Ga Jormua Ophiolite Complex, Finland: Implications for Mantle and Crustal Evolution
The ca. 1.95-Ga Jormua Ophiolite Complex (JOC), Finland, is a rare Paleoproterozoic ophiolite that preserves a record of diverse upper mantle materials and melting processes. Meter-scale grid sampling of four JOC outcrops, as well as non-grid samples, permits evaluation of meter- to kilometer-scale mantle heterogeneity within the JOC. Significant heterogeneity is observed between the four grids, and also among a number of the non-grid samples examined. Variations in the concentrations of fluid-mobile elements are particularly large among different samples and locations. New whole-rock major, lithophile trace, and highly siderophile element data (HSE: Os, Ir, Ru, Pt, Pd, Re), including 187Re–187Os isotopic data, for serpentinized harzburgites indicate the presence of two distinct compositional types and probable modes of origin within the JOC. This is consistent with prior findings. Type 1 is similar to modern refractory abyssal-type mantle. Type 2 is more highly refractory than Type 1, and most likely represents samples from sub-continental lithospheric mantle (SCLM). Type 1 mantle is moderately heterogeneous with respect to major and trace element and Os isotopic compositions at both the meter and kilometer scales. By contrast, Type 2 mantle is considerably more homogeneous than Type 1 grids at the meter scale, but is more heterogeneous at the kilometer scale. The median initial γOs value for Type 1 mantle, calculated for 1.95 Ga, is ~ −2.0 (where γOs is the % deviation in 187Os/188Os relative to a chondritic reference calculated for a specified time). This isotopic composition is consistent with a moderate, long-term decrease in Re/Os relative to the estimate for primitive mantle, prior to JOC formation. The similarity in this γOs value to the value for the modern abyssal mantle, as well as the initial values for several Phanerozoic ophiolites, suggests that the upper mantle achieved a Re/Os ratio similar to the chondritic reference by ~2 Ga, then evolved along a subparallel trajectory to the chondritic reference since then. For this to occur, only limited Re could have been permanently removed from the upper mantle since at least the time the JOC formed. A localized secondary metasomatic event at ~2 Ga, concurrent with the estimated obduction age for the JOC and subsequent Svecofennian Orogeny, affected the HSE systematics of some Type 1 samples. By contrast, late Archean Os TRD model ages for Type 2 rocks indicate a depletion event superimposed upon the long-term Re depletion of the abyssal mantle. This event was established no later than ~2.6 Ga and may have occurred during a period of significant, well-documented crustal production in the Karelia craton at ~2.7 Ga.

 
more » « less
Award ID(s):
1423879
NSF-PAR ID:
10477851
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Oxford
Date Published:
Journal Name:
Journal of Petrology
Volume:
64
Issue:
12
ISSN:
0022-3530
Subject(s) / Keyword(s):
["ophiolite","geochemistry","Re\u2013Os","highly siderophile elements","harzburgite","mantle","Precambrian"]
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Major and trace element abundances, including highly siderophile elements, and 187Os and 182W isotopic compositions were determined for ca. 89 Ma mafic and ultramafic rocks from the islands of Gorgona (Colombia) and Curaçao (Dutch Caribbean). The volcanic systems of both islands were likely associated with a mantle plume that generated the Caribbean Large Igneous Provence. The major and lithophile trace element characteristics of the rocks examined are consistent with the results of prior studies, and indicate derivation from both a chemically highly-depleted mantle component, and an enriched, or less highly-depleted mantle component. Highly siderophile element abundances for these rocks are generally similar to rocks with comparable MgO globally, indicating that the major source components were not substantially enriched or depleted in these elements. Rhenium-Os isotopic systematics of most rocks of both islands indicate derivation from a mantle source with an initial 187Os/188Os ratio between that of the contemporaneous average depleted mid-ocean ridge mantle and bulk silicate Earth. The composition may reflect either an average lower mantle signature, or global-scale Os isotopic heterogeneity in the upper mantle. Some of the basalts, as well as two of the komatiites, are characterized by calculated initial 187Os/188Os ratios 10-15% higher than the chondritic reference. These more radiogenic Os isotopic compositions do not correlate with major or trace element systematics, and indicate a mantle source component that was most likely produced by either sulfide metasomatism or ancient Re/Os fractionation. Tungsten-182 isotopic compositions measured for rocks from both islands are characterized by variable 182W values ranging from modern bulk silicate Earth-like to strongly negative values. The 182W values do not correlate with major/trace element abundances or initial 187Os/188Os compositions. As with some modern ocean island basalt systems, however, the lowest 182W value (-53) measured, for a Gorgona olivine gabbro, corresponds with the highest 3He/4He previously measured from the suite (15.8 R/RA). Given the lack of correlation with other chemical/isotopic compositions, the mantle component characterized by negative 182W and possibly high 3He/4He is most parsimoniously explained to have formed as a result of isotopic equilibration between the mantle and core at the core-mantle boundary. 
    more » « less
  2. N/A (Ed.)
    Long-lived radiogenic isotopes of abyssal peridotites, residues of MORB extraction, show that the asthenosphere is intrinsically heterogeneous, which is inherited from ancient melting events and crustal recycling during Earth's history. Yet, Mid Ocean Ridge Basalts (MORB) have a rather uniform average composition, suggesting that the variability of their mantle source is concealed during their ascent. Here we document that mantle heterogeneity is exceptionally well preserved in high permeability mantle conduits from the Lanzo South mantle massif, Western Italian Alps. Nd-Hf-Os isotopes of decametre-scale replacive bodies provide evidence for the existence of two generations of mantle channels. The first generation consists of dunites concordant to the main foliation of host peridotites. The replacive dunites include clinopyroxene with MORB-like incompatible element signature and initial (160 Ma) ƐNd and ƐHf ranging from +4 to +7 and from +10 to +15, respectively. The second generation, made up of pyroxene-poor harzburgites discordant to the main foliation, is geochemically depleted in incompatible elements and its clinopyroxene displays highly radiogenic Hf isotopes (initial ƐHf up to +202). The mantle channel heterogeneity is confirmed by Resingle bondOs isotopes and platinum-groups elements. The MORB-type dunites have high Pt, Pd and, locally, Re, and have 187Os/188Os ratios similar to the host peridotite (0.122–0.128). On the other hand, the depleted bodies have lower Pt, Pd and Re, and 187Os/188Os ratios ranging from those of host peridotites (0.124) to highly unradiogenic values (0.118) in the most refractory sample. The preserved heterogeneity in trace elements, PGE, and Nd-Hf-Os isotopes highlights infiltration of melts from a highly heterogeneous mantle, still partially preserved within these mantle bodies. If applied to present-day Mid Ocean Ridges, our model indicates that the isotopic variability of melts migrating through replacive mantle conduits is by far larger than magmas erupted on the seafloor, which implies that diverse mantle components are mainly delivered and homogenised above the crust-mantle boundary. 
    more » « less
  3. ABSTRACT The abundance of Ru in chromite has been suggested as an indicator of sulfide liquid saturation in komatiites. The komatiite magma-derived Archean Coobina intrusion is known to be barren in terms of sulfide mineralization. Therefore, the Coobina intrusion can serve as a useful case study to test the applicability of Ru abundance in chromite as a potential indicator for sulfide mineralization, as well as for better understanding the PGE-chromite association in general. The Coobina intrusion is a highly deformed layered intrusion interpreted to be a flared dike. It contains multiple massive chromitite seams that have been recently mined for metallurgical-grade chromite. In this study, 18 samples from chromitite seams throughout this intrusion are investigated for their whole-rock platinum group element (PGE) contents, which are compared to their chromite mineral chemistry (including PGE content), the platinum group mineral (PGM) mineralogy, and Re-Os isotope systematics. Each sample has a similar chromite major and minor element chemistry, but a unique trace element signature, even within the same seam. In general, there are higher concentrations of Ru (>300 ppb) within chromite in the southeast (toward the feeder dike) and lower concentrations (<50 ppb Ru) in the northwest. At a sample scale, Ru in the whole rock and Ru in solid solution in the chromite are inversely correlated, while Ir shows a positive correlation between the whole rock and chromite mineral chemistry, indicating differing partitioning behaviors within the iridium-group PGE (IPGE = Os, Ir, Ru). The inverse correlation between Ru in solid solution within chromite and Ru in whole-rock chromitite suggests that, for seams with high Ru in whole rock, Ru is occurring within separate PGM phases. This is supported by the observation that the samples with high whole-rock Ru also have a high number of visible metal alloy and/or PGM inclusions. Although these inclusions are not necessarily Ru-rich phases, their presence suggests that there is a preference for these samples to form nuggets, which may restrict Ru partitioning into the chromite crystal structure. We suggest that the low Ru values in the Coobina chromite are a result of transient sulfide saturation. The Re-Os isotopic composition of the Coobina chromitite is chondritic [γ187Os(3.189 Ga) = −0.63 ± 0.21] and is consistent with derivation of the Coobina parental magma from the convecting upper mantle source, providing evidence for the mantle origin of the Coobina PGE inventory. If using chromite as a detrital indicator mineral for magmatic sulfide exploration, it must be kept in mind that transient sulfide saturation within chromitite seams may give a false positive signature. 
    more » « less
  4. Fresh samples of basalts were collected by dredging from the Nanyue intraplate seamount in the Southwest sub-basin of the South China Sea (SCS). These are alkali basalts displaying right-sloping, chondrite-normalized rare earth element (REE) profiles. The investigated basalts are characterized by low Os content (60.37–85.13 ppt) and radiogenic 187Os/188Os ratios (~0.19 to 0.21). Furthermore, 40Ar/39Ar dating of the Nanyue basalts showed they formed during the Tortonian (~8.3 Ma) and, thus, are products of (Late Cenozoic) post-spreading volcanism. The Sr–Nd–Pb–Hf isotopic compositions of the Nanyue basalts indicate that their parental melts were derived from an upper mantle reservoir possessing the so-called Dupal isotopic anomaly. Semiquantitative isotopic modeling demonstrates that the isotopic compositions of the Nanyue basalts can be reproduced by mixing three components: the average Pacific midocean ridge basalt (MORB), the lower continental crust (LCC), and the average Hainan ocean island basalt (OIB). Our preferred hypothesis for the genesis of the Nanyue basalts is that their parental magmas were produced from an originally depleted mantle (DM) source that was much affected by the activity of the Hainan plume. Initially, the Hainan diapir caused a thermal perturbation in the upper mantle under the present-day Southwest sub-basin of the SCS that led to erosion of the overlying LCC. Eventually, the resultant suboceanic lithospheric mantle (SOLM) interacted with OIB-type components derived from the nearby Hainan plume. Collectively, these processes contributed crustal- and plume-type components to the upper mantle underlying the Southwest sub-basin of the SCS. This implies that the Dupal isotopic signature in the upper mantle beneath the SCS was an artifact of in situ geological processes rather than a feature inherited from a Southern Hemispheric, upper mantle source. 
    more » « less
  5. null (Ed.)
    Oceanic island basalts are targeted for geochemical study because they provide a direct window into mantle composition and a wealth of information on the dynamics and timescales associated with Earth mixing. Previous studies mainly focused on the shield volcanic stage of oceanic islands and the more fusible, enriched mantle components that are easily distinguished in those basalts. Mantle depleted compositions are typically more difficult to resolve unless large amounts of this material participated in mantle melting (e.g., mid-ocean ridges), or unique processes allow for their compositions to be erupted undiluted, such as very small degrees of melting of a source with minimal fusible enriched components (e.g., rejuvenated basalts) or as xenoliths (e.g., abyssal peridotites). Mantle depleted components, defined here as material with low time-integrated Rb/Sr (low 87Sr/86Sr) and high time-integrated Sm/Nd and Lu/Hf ratios (high 143Nd/144Nd and 176Hf/177Hf) relative to primitive mantle, derive from a potentially very large volume reservoir (up to 80% of the mantle), and therefore need adequate characterization in order estimate the composition of the Earth and mantle-derived melts. This review focuses on mantle depleted compositions in oceanic island basalts using the Hawaiian-Emperor chain as a case study. The Hawaiian-Emperor chain is the ∼6000 km long geological record of the deeply sourced Hawaiian mantle plume, active for>81 Myr. Hawaiian volcanism evolves through four volcanic stages as a volcano traverses the Hawaiian plume: alkalic preshield, tholeiitic shield (80–90% volcano volume), alkalic postshield (∼1%), and silica undersaturated rejuvenated (< 0.1%). We report Pb-Sr-Nd-Hf isotope compositions and trace element concentrations of three rejuvenated Northwest Hawaiian Ridge basalts and compare them to an exhaustive compiled dataset of basalts from the Hawaiian Islands to the Emperor Seamounts. The Northwest Hawaiian Ridge (NWHR) includes 51 volcanoes spanning ∼42 m.y. between the bend in the Hawaiian-Emperor chain and the Hawaiian Islands where there is no high-precision isotopic data published on the rejuvenated-stage over ∼47% of the chain. NWHR and Hawaiian Island rejuvenated basalts are geochemically similar, indicating a consistent source for rejuvenated volcanism over ∼12.5 million years. In contrast, shield-stage basalts from the oldest Emperor Seamounts are more depleted in isotopic composition (i.e., higher 176Hf/177Hf, and 143Nd/144Nd with lower 87Sr/86Sr and 208Pb*/206Pb*) and trace element concentrations (i.e., much lower concentrations of highly incompatible elements) than all other depleted Hawaiian basalts younger than the bend, including NWHR rejuvenated basalts. The strongly depleted source for the oldest Emperor Seamounts (> 70 Ma) was likely related to interaction with the Kula-Pacific-Izanagi mid-ocean ridge spreading system active near the Hawaiian plume in the Late Cretaceous. In contrast, the incompatible trace element ratios of NWHR rejuvenated basalts require a distinct source in the Hawaiian mantle plume that was imprinted by ancient (> 1 Ga) partial melting, likely ancient recycled oceanic lithosphere. This review of the geochemistry of Hawaiian depleted components documents the need for the sampling of multiple distinctive depleted compositions, each preferentially melted during specific periods of Hawaiian plume activity. This suggests that the composition of depleted components can evolve during the lifetime of the mantle plume, as observed for enriched components in the Hawaiian mantle plume. Changes in the composition of depleted components are dominantly controlled by the upper mantle tectonic configurations at the time of eruption (i.e., proximity to a mid-ocean ridge), as this effect overwhelms the signal imparted by potentially sampling different lower mantle components through time. 
    more » « less