The 2022–2023 mpox outbreak exhibited an uneven global distribution. While countries such as the UK, Brazil, and the USA were most heavily affected in 2022, many Asian countries, specifically China, Japan, South Korea, and Thailand, experienced the outbreak later, in 2023, with significantly fewer reported cases relative to their populations. This variation in timing and scale distinguishes the outbreaks in these Asian countries from those in the first wave. This study evaluates the predictability of mpox outbreaks with smaller case counts in Asian countries using popular epidemic forecasting methods, including the ARIMA, Prophet, GLM, GAM, n-Sub-epidemic, and Sub-epidemic Wave frameworks. Despite the fact that the ARIMA and GAM models performed well for certain countries and prediction windows, their results were generally inconsistent and highly dependent on the country, i.e., the dataset, as well as the prediction interval length. In contrast, n-Sub-epidemic Ensembles demonstrated more reliable and robust performance across different datasets and predictions, indicating the effectiveness of this model on small datasets and its utility in the early stages of future pandemics.
more »
« less
Backcasting COVID-19: a physics-informed estimate for early case incidence
It is widely accepted that the number of reported cases during the first stages of the COVID-19 pandemic severely underestimates the number of actual cases. We leverage delay embedding theorems of Whitney and Takens and use Gaussian process regression to estimate the number of cases during the first 2020 wave based on the second wave of the epidemic in several European countries, South Korea and Brazil. We assume that the second wave was more accurately monitored, even though we acknowledge that behavioural changes occurred during the pandemic and region- (or country-) specific monitoring protocols evolved. We then construct a manifold diffeomorphic to that of the implied original dynamical system, using fatalities or hospitalizations only. Finally, we restrict the diffeomorphism to the reported cases coordinate of the dynamical system. Our main finding is that in the European countries studied, the actual cases are under-reported by as much as 50%. On the other hand, in South Korea—which had a proactive mitigation approach—a far smaller discrepancy between the actual and reported cases is predicted, with an approximately 18% predicted underestimation. We believe that our backcasting framework is applicable to other epidemic outbreaks where (due to limited or poor quality data) there is uncertainty around the actual cases.
more »
« less
- Award ID(s):
- 1815764
- PAR ID:
- 10477890
- Publisher / Repository:
- The Royal Society Publishing
- Date Published:
- Journal Name:
- Royal Society Open Science
- Volume:
- 9
- Issue:
- 12
- ISSN:
- 2054-5703
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Early warning indicators based on critical slowing down have been suggested as a model-independent and low-cost tool to anticipate the (re)emergence of infectious diseases. We studied whether such indicators could reliably have anticipated the second COVID-19 wave in European countries. Contrary to theoretical predictions, we found that characteristic early warning indicators generally decreased rather than increased prior to the second wave. A model explains this unexpected finding as a result of transient dynamics and the multiple timescales of relaxation during a non-stationary epidemic. Particularly, if an epidemic that seems initially contained after a first wave does not fully settle to its new quasi-equilibrium prior to changing circumstances or conditions that force a second wave, then indicators will show a decreasing rather than an increasing trend as a result of the persistent transient trajectory of the first wave. Our simulations show that this lack of timescale separation was to be expected during the second European epidemic wave of COVID-19. Overall, our results emphasize that the theory of critical slowing down applies only when the external forcing of the system across a critical point is slow relative to the internal system dynamics.more » « less
-
Abstract In this work, the COVID-19 pandemic burden in Ukraine is investigated retrospectively using the excess mortality measures during 2020–2021. In particular, the epidemic impact on the Ukrainian population is studied via the standardized both all-cause and cause-specific mortality scores before and during the epidemic. The excess mortality counts during the pandemic were predicted based on historic data using parametric and nonparametric modeling and then compared with the actual reported counts to quantify the excess. The corresponding standardized mortalityP-score metrics were also compared with the neighboring countries. In summary, there were three “waves” of excess all-cause mortality in Ukraine in December 2020, April 2021 and November 2021 with excess of 32%, 43% and 83% above the expected mortality. Each new “wave” of the all-cause mortality was higher than the previous one and the mortality “peaks” corresponded in time to three “waves” of lab-confirmed COVID-19 mortality. The lab-confirmed COVID-19 mortality constituted 9% to 24% of the all-cause mortality during those three peak months. Overall, the mortality trends in Ukraine over time were similar to neighboring countries where vaccination coverage was similar to that in Ukraine. For cause-specific mortality, the excess observed was due to pneumonia as well as circulatory system disease categories that peaked at the same times as the all-cause and lab-confirmed COVID-19 mortality, which was expected. The pneumonias as well as circulatory system disease categories constituted the majority of all cases during those peak times. The seasonality in mortality due to the infectious and parasitic disease category became less pronounced during the pandemic. While the reported numbers were always relatively low, alcohol-related mortality also declined during the pandemic.more » « less
-
This work demonstrates the efficiency of using iterative ensemble smoothers to estimate the parameters of an SEIR model. We have extended a standard SEIR model with age-classes and compartments of sick, hospitalized, and dead. The data conditioned on are the daily numbers of accumulated deaths and the number of hospitalized. Also, it is possible to condition the model on the number of cases obtained from testing. We start from a wide prior distribution for the model parameters; then, the ensemble conditioning leads to a posterior ensemble of estimated parameters yielding model predictions in close agreement with the observations. The updated ensemble of model simulations has predictive capabilities and include uncertainty estimates. In particular, we estimate the effective reproductive number as a function of time, and we can assess the impact of different intervention measures. By starting from the updated set of model parameters, we can make accurate short-term predictions of the epidemic development assuming knowledge of the future effective reproductive number. Also, the model system allows for the computation of long-term scenarios of the epidemic under different assumptions. We have applied the model system on data sets from several countries, i.e., the four European countries Norway, England, The Netherlands, and France; the province of Quebec in Canada; the South American countries Argentina and Brazil; and the four US states Alabama, North Carolina, California, and New York. These countries and states all have vastly different developments of the epidemic, and we could accurately model the SARS-CoV-2 outbreak in all of them. We realize that more complex models, e.g., with regional compartments, may be desirable, and we suggest that the approach used here should be applicable also for these models.more » « less
-
Abstract Disease modelling has had considerable policy impact during the ongoing COVID-19 pandemic, and it is increasingly acknowledged that combining multiple models can improve the reliability of outputs. Here we report insights from ten weeks of collaborative short-term forecasting of COVID-19 in Germany and Poland (12 October–19 December 2020). The study period covers the onset of the second wave in both countries, with tightening non-pharmaceutical interventions (NPIs) and subsequently a decay (Poland) or plateau and renewed increase (Germany) in reported cases. Thirteen independent teams provided probabilistic real-time forecasts of COVID-19 cases and deaths. These were reported for lead times of one to four weeks, with evaluation focused on one- and two-week horizons, which are less affected by changing NPIs. Heterogeneity between forecasts was considerable both in terms of point predictions and forecast spread. Ensemble forecasts showed good relative performance, in particular in terms of coverage, but did not clearly dominate single-model predictions. The study was preregistered and will be followed up in future phases of the pandemic.more » « less