skip to main content


Title: Fine-grained Policy-driven I/O Sharing for Burst Buffers
A burst buffer is a common method to bridge the performance gap between the I/O needs of modern supercomputing applications and the performance of the shared file system on large-scale supercomputers. However, existing I/O sharing methods require resource isolation, offline profiling, or repeated execution that significantly limit the utilization and applicability of these systems. Here we present ThemisIO, a policy-driven I/O sharing framework for a remote-shared burst buffer: a dedicated group of I/O nodes, each with a local storage device. ThemisIO preserves high utilization by implementing opportunity fairness so that it can reallocate unused I/O resources to other applications. ThemisIO accurately and efficiently allocates I/O cycles among applications, purely based on real-time I/O behavior without requiring user-supplied information or offline-profiled application characteristics. ThemisIO supports a variety of fair sharing policies, such as user-fair, size-fair, as well as composite policies, e.g., group-then-user-fair. All these features are enabled by its statistical token design. ThemisIO can alter the execution order of incoming I/O requests based on assigned tokens to precisely balance I/O cycles between applications via time slicing, thereby enforcing processing isolation. Experiments using I/O benchmarks show that ThemisIO sustains 13.5--13.7% higher I/O throughput and 19.5--40.4% lower performance variation than existing algorithms. For real applications, ThemisIO significantly reduces the slowdown by 59.1--99.8% caused by I/O interference.  more » « less
Award ID(s):
2008388 2008286
NSF-PAR ID:
10477900
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Page Range / eLocation ID:
1 to 12
Format(s):
Medium: X
Location:
Denver CO USA
Sponsoring Org:
National Science Foundation
More Like this
  1. High performance computing (HPC) is undergoing significant changes. The emerging HPC applications comprise both compute- and data-intensive applications. To meet the intense I/O demand from emerging data-intensive applications, burst buffers are deployed in production systems. Existing HPC schedulers are mainly CPU-centric. The extreme heterogeneity of hardware devices, combined with workload changes, forces the schedulers to consider multiple resources (e.g., burst buffers) beyond CPUs, in decision making. In this study, we present a multi-resource scheduling scheme named BBSched that schedules user jobs based on not only their CPU requirements, but also other schedulable resources such as burst buffer. BBSched formulates the scheduling problem into a multi-objective optimization (MOO) problem and rapidly solves the problem using a multi-objective genetic algorithm. The multiple solutions generated by BBSched enables system managers to explore potential tradeoffs among various resources, and therefore obtains better utilization of all the resources. The trace-driven simulations with real system workloads demonstrate that BBSched improves scheduling performance by up to 41% compared to existing methods, indicating that explicitly optimizing multiple resources beyond CPUs is essential for HPC scheduling. 
    more » « less
  2. Obeid, Iyad Selesnick (Ed.)
    Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describe our efforts to transform a high-performance offline seizure detection system [3] into a low latency real-time or online seizure detection system. An overview of the system is shown in Figure 1. The main difference between an online versus offline system is that an online system should always be causal and has minimum latency which is often defined by domain experts. The offline system, shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients (LFCC) [6] features from each EEG channel separately. We use the hypotheses generated by the P1 model and create additional features that carry information about the detected events and their confidence. The P2 model uses these additional features and the LFCC features to learn the temporal and spatial aspects of the EEG signals using a hybrid convolutional neural network (CNN) and LSTM model. Finally, Phase 3 aggregates the results from both P1 and P2 before applying a final postprocessing step. The online system implements Phase 1 by taking advantage of the Linux piping mechanism, multithreading techniques, and multi-core processors. To convert Phase 1 into an online system, we divide the system into five major modules: signal preprocessor, feature extractor, event decoder, postprocessor, and visualizer. The system reads 0.1-second frames from each EEG channel and sends them to the feature extractor and the visualizer. The feature extractor generates LFCC features in real time from the streaming EEG signal. Next, the system computes seizure and background probabilities using a channel-based LSTM model and applies a postprocessor to aggregate the detected events across channels. The system then displays the EEG signal and the decisions simultaneously using a visualization module. The online system uses C++, Python, TensorFlow, and PyQtGraph in its implementation. The online system accepts streamed EEG data sampled at 250 Hz as input. The system begins processing the EEG signal by applying a TCP montage [8]. Depending on the type of the montage, the EEG signal can have either 22 or 20 channels. To enable the online operation, we send 0.1-second (25 samples) length frames from each channel of the streamed EEG signal to the feature extractor and the visualizer. Feature extraction is performed sequentially on each channel. The signal preprocessor writes the sample frames into two streams to facilitate these modules. In the first stream, the feature extractor receives the signals using stdin. In parallel, as a second stream, the visualizer shares a user-defined file with the signal preprocessor. This user-defined file holds raw signal information as a buffer for the visualizer. The signal preprocessor writes into the file while the visualizer reads from it. Reading and writing into the same file poses a challenge. The visualizer can start reading while the signal preprocessor is writing into it. To resolve this issue, we utilize a file locking mechanism in the signal preprocessor and visualizer. Each of the processes temporarily locks the file, performs its operation, releases the lock, and tries to obtain the lock after a waiting period. The file locking mechanism ensures that only one process can access the file by prohibiting other processes from reading or writing while one process is modifying the file [9]. The feature extractor uses circular buffers to save 0.3 seconds or 75 samples from each channel for extracting 0.2-second or 50-sample long center-aligned windows. The module generates 8 absolute LFCC features where the zeroth cepstral coefficient is replaced by a temporal domain energy term. For extracting the rest of the features, three pipelines are used. The differential energy feature is calculated in a 0.9-second absolute feature window with a frame size of 0.1 seconds. The difference between the maximum and minimum temporal energy terms is calculated in this range. Then, the first derivative or the delta features are calculated using another 0.9-second window. Finally, the second derivative or delta-delta features are calculated using a 0.3-second window [6]. The differential energy for the delta-delta features is not included. In total, we extract 26 features from the raw sample windows which add 1.1 seconds of delay to the system. We used the Temple University Hospital Seizure Database (TUSZ) v1.2.1 for developing the online system [10]. The statistics for this dataset are shown in Table 1. A channel-based LSTM model was trained using the features derived from the train set using the online feature extractor module. A window-based normalization technique was applied to those features. In the offline model, we scale features by normalizing using the maximum absolute value of a channel [11] before applying a sliding window approach. Since the online system has access to a limited amount of data, we normalize based on the observed window. The model uses the feature vectors with a frame size of 1 second and a window size of 7 seconds. We evaluated the model using the offline P1 postprocessor to determine the efficacy of the delayed features and the window-based normalization technique. As shown by the results of experiments 1 and 4 in Table 2, these changes give us a comparable performance to the offline model. The online event decoder module utilizes this trained model for computing probabilities for the seizure and background classes. These posteriors are then postprocessed to remove spurious detections. The online postprocessor receives and saves 8 seconds of class posteriors in a buffer for further processing. It applies multiple heuristic filters (e.g., probability threshold) to make an overall decision by combining events across the channels. These filters evaluate the average confidence, the duration of a seizure, and the channels where the seizures were observed. The postprocessor delivers the label and confidence to the visualizer. The visualizer starts to display the signal as soon as it gets access to the signal file, as shown in Figure 1 using the “Signal File” and “Visualizer” blocks. Once the visualizer receives the label and confidence for the latest epoch from the postprocessor, it overlays the decision and color codes that epoch. The visualizer uses red for seizure with the label SEIZ and green for the background class with the label BCKG. Once the streaming finishes, the system saves three files: a signal file in which the sample frames are saved in the order they were streamed, a time segmented event (TSE) file with the overall decisions and confidences, and a hypotheses (HYP) file that saves the label and confidence for each epoch. The user can plot the signal and decisions using the signal and HYP files with only the visualizer by enabling appropriate options. For comparing the performance of different stages of development, we used the test set of TUSZ v1.2.1 database. It contains 1015 EEG records of varying duration. The any-overlap performance [12] of the overall system shown in Figure 2 is 40.29% sensitivity with 5.77 FAs per 24 hours. For comparison, the previous state-of-the-art model developed on this database performed at 30.71% sensitivity with 6.77 FAs per 24 hours [3]. The individual performances of the deep learning phases are as follows: Phase 1’s (P1) performance is 39.46% sensitivity and 11.62 FAs per 24 hours, and Phase 2 detects seizures with 41.16% sensitivity and 11.69 FAs per 24 hours. We trained an LSTM model with the delayed features and the window-based normalization technique for developing the online system. Using the offline decoder and postprocessor, the model performed at 36.23% sensitivity with 9.52 FAs per 24 hours. The trained model was then evaluated with the online modules. The current performance of the overall online system is 45.80% sensitivity with 28.14 FAs per 24 hours. Table 2 summarizes the performances of these systems. The performance of the online system deviates from the offline P1 model because the online postprocessor fails to combine the events as the seizure probability fluctuates during an event. The modules in the online system add a total of 11.1 seconds of delay for processing each second of the data, as shown in Figure 3. In practice, we also count the time for loading the model and starting the visualizer block. When we consider these facts, the system consumes 15 seconds to display the first hypothesis. The system detects seizure onsets with an average latency of 15 seconds. Implementing an automatic seizure detection model in real time is not trivial. We used a variety of techniques such as the file locking mechanism, multithreading, circular buffers, real-time event decoding, and signal-decision plotting to realize the system. A video demonstrating the system is available at: https://www.isip.piconepress.com/projects/nsf_pfi_tt/resources/videos/realtime_eeg_analysis/v2.5.1/video_2.5.1.mp4. The final conference submission will include a more detailed analysis of the online performance of each module. ACKNOWLEDGMENTS Research reported in this publication was most recently supported by the National Science Foundation Partnership for Innovation award number IIP-1827565 and the Pennsylvania Commonwealth Universal Research Enhancement Program (PA CURE). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the official views of any of these organizations. REFERENCES [1] A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for electroencephalogram (EEG) classification tasks: a review,” J. Neural Eng., vol. 16, no. 3, p. 031001, 2019. https://doi.org/10.1088/1741-2552/ab0ab5. [2] A. C. Bridi, T. Q. Louro, and R. C. L. Da Silva, “Clinical Alarms in intensive care: implications of alarm fatigue for the safety of patients,” Rev. Lat. Am. Enfermagem, vol. 22, no. 6, p. 1034, 2014. https://doi.org/10.1590/0104-1169.3488.2513. [3] M. Golmohammadi, V. Shah, I. Obeid, and J. Picone, “Deep Learning Approaches for Automatic Seizure Detection from Scalp Electroencephalograms,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York, New York, USA: Springer, 2020, pp. 233–274. https://doi.org/10.1007/978-3-030-36844-9_8. [4] “CFM Olympic Brainz Monitor.” [Online]. Available: https://newborncare.natus.com/products-services/newborn-care-products/newborn-brain-injury/cfm-olympic-brainz-monitor. [Accessed: 17-Jul-2020]. [5] M. L. Scheuer, S. B. Wilson, A. Antony, G. Ghearing, A. Urban, and A. I. Bagic, “Seizure Detection: Interreader Agreement and Detection Algorithm Assessments Using a Large Dataset,” J. Clin. Neurophysiol., 2020. https://doi.org/10.1097/WNP.0000000000000709. [6] A. Harati, M. Golmohammadi, S. Lopez, I. Obeid, and J. Picone, “Improved EEG Event Classification Using Differential Energy,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium, 2015, pp. 1–4. https://doi.org/10.1109/SPMB.2015.7405421. [7] V. Shah, C. Campbell, I. Obeid, and J. Picone, “Improved Spatio-Temporal Modeling in Automated Seizure Detection using Channel-Dependent Posteriors,” Neurocomputing, 2021. [8] W. Tatum, A. Husain, S. Benbadis, and P. Kaplan, Handbook of EEG Interpretation. New York City, New York, USA: Demos Medical Publishing, 2007. [9] D. P. Bovet and C. Marco, Understanding the Linux Kernel, 3rd ed. O’Reilly Media, Inc., 2005. https://www.oreilly.com/library/view/understanding-the-linux/0596005652/. [10] V. Shah et al., “The Temple University Hospital Seizure Detection Corpus,” Front. Neuroinform., vol. 12, pp. 1–6, 2018. https://doi.org/10.3389/fninf.2018.00083. [11] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011. https://dl.acm.org/doi/10.5555/1953048.2078195. [12] J. Gotman, D. Flanagan, J. Zhang, and B. Rosenblatt, “Automatic seizure detection in the newborn: Methods and initial evaluation,” Electroencephalogr. Clin. Neurophysiol., vol. 103, no. 3, pp. 356–362, 1997. https://doi.org/10.1016/S0013-4694(97)00003-9. 
    more » « less
  3. On large-scale high performance computing (HPC) systems, applications are provisioned with aggregated resources to meet their peak demands for brief periods. This results in resource underutilization because application requirements vary a lot during execution. This problem is particularly pronounced for deep learning applications that are running on leadership HPC systems with a large pool of burst buffers in the form of flash or non-volatile memory (NVM) devices. In this paper, we examine the I/O patterns of deep neural networks and reveal their critical need of loading many small samples randomly for successful training. We have designed a specialized Deep Learning File System (DLFS) that provides a thin set of APIs. Particularly, we design the metadata management of DLFS through an in-memory tree-based sample directory and its file services through the user-level SPDK protocol that can disaggregate the capabilities of NVM Express (NVMe) devices to parallel training tasks. Our experimental results show that DLFS can dramatically improve the throughput of training for deep neural networks on NVMe over Fabric, compared with the kernel-based Ext4 file system. Furthermore, DLFS achieves efficient user-level storage disaggregation with very little CPU utilization. 
    more » « less
  4. Cloud providers such as Amazon and Microsoft have begun to support on-demand FPGA acceleration in the cloud, and hardware vendors will support FPGAs in future processors. At the same time, technology advancements such as 3D stacking, through-silicon vias (TSVs), and FinFETs have greatly increased FPGA density. The massive parallelism of current FPGAs can support not only extremely large applications, but multiple applications simultaneously as well. System support for FPGAs, however, is in its infancy. Unlike software, where resource configurations are limited to simple dimensions of compute, memory, and I/O, FPGAs provide a multi-dimensional sea of resources known as the FPGA fabric: logic cells, floating point units, memories, and I/O can all be wired together, leading to spatial constraints on FPGA resources. Current stacks either support only a single application or statically partition the FPGA fabric into fixed-size slots. These designs cannot efficiently support diverse workloads: the size of the largest slot places an artificial limit on application size, and oversized slots result in wasted FPGA resources and reduced concurrency. This paper presents AMORPHOS, which encapsulates user FPGA logic in morphable tasks, or Morphlets. Morphlets provide isolation and protection across mutually distrustful protection domains, extending the guarantees of software processes. Morphlets can morph, dynamically altering their deployed form based on resource requirements and availability. To build Morphlets, developers provide a parameterized hardware design that interfaces with AMORPHOS, along with a mesh, which specifies external resource requirements. AMORPHOS explores the parameter space, generating deployable Morphlets of varying size and resource requirements. AMORPHOS multiplexes Morphlets on the FPGA in both space and time to maximize FPGA utilization. We implement AMORPHOS on Amazon F1 [1] and Microsoft Catapult [92]. We show that protected sharing and dynamic scalability support on workloads such as DNN inference and blockchain mining improves aggregate throughput up to 4× and 23× on Catapult and F1 respectively. 
    more » « less
  5. Cloud computing has motivated renewed interest in resource allocation problems with new consumption models. A common goal is to share a resource, such as CPU or I/O bandwidth, among distinct users with different demand patterns as well as different quality of service requirements. To ensure these service requirements, cloud offerings often come with a service level agreement (SLA) between the provider and the users. A SLA specifies the amount of a resource a user is entitled to utilize. In many cloud settings, providers would like to operate resources at high utilization while simultaneously respecting individual SLAs. There is typically a trade-off between these two objectives; for example, utilization can be increased by shifting away resources from idle users to “scavenger” workload, but with the risk of the former then becoming active again. We study this fundamental tradeoff by formulating a resource allocation model that captures basic properties of cloud computing systems, including SLAs, highly limited feedback about the state of the system, and variable and unpredictable input sequences. Our main result is a simple and practical algorithm that achieves near-optimal performance on the above two objectives. First, we guarantee nearly optimal utilization of the resource even if compared with the omniscient offline dynamic optimum. Second, we simultaneously satisfy all individual SLAs up to a small error. The main algorithmic tool is a multiplicative weight update algorithm and a primal-dual argument to obtain its guarantees. We also provide numerical validation on real data to demonstrate the performance of our algorithm in practical applications. 
    more » « less