Abstract In simulations of radiative‐convective equilibrium (RCE), and with sufficiently large domains, organized convection enhances top of atmosphere outgoing longwave radiation due to the reduced cloud coverage and drying of the mean climate state. As a consequence, estimates of climate sensitivity and cloud feedbacks may be affected. Here, we use a multi‐model ensemble configured in RCE to study the dependence of explicitly calculated cloud feedbacks on the existence of organized convection, the degree to which convection within a domain organizes, and the change in organized convection with warming sea surface temperature. We find that, when RCE simulations with organized convection are compared to RCE simulations without organized convection, the propensity for convection to organize in RCE causes cloud feedbacks to have larger magnitudes due to the inclusion of low clouds, accompanied by a much larger inter‐model spread. While we find no dependence of the cloud feedback on changes in organization with warming, models that are, on average, more organized have less positive, or even negative, cloud feedbacks. This is primarily due to changes in cloud optical depth in the shortwave, specifically high clouds thickening with warming in strongly organized domains. The shortwave cloud optical depth feedback also plays an important role in causing the tropical anvil cloud area feedback to be positive which is directly opposed to the expected negative or near zero cloud feedback found in prior work. 
                        more » 
                        « less   
                    
                            
                            Explicitly Resolved Cloud Feedbacks in the Radiative‐Convective Equilibrium Model Intercomparison Project
                        
                    
    
            Abstract Radiative‐convective equilibrium (RCE) is particularly well suited for studying tropical deep‐convection, a regime of clouds that contributes some of the highest uncertainties to the estimates of total cloud feedback. In order to perform a comprehensive calculation and decomposition of cloud feedbacks in cloud‐permitting models, previously primarily done in global climate models, the configuration of a satellite simulator for use with offline data was successfully implemented. The resultant total cloud feedback is slightly positive, primarily driven by the longwave effects of increases in cloud altitude. The high‐cloud altitude feedback is robustly positive and has a central value and uncertainty well‐matched with prior estimates. Reductions in high cloud amount drive a tropical anvil cloud area feedback that is on average negative, consistent with prior estimates. However, a subset of models with finer horizontal grid spacing indicate that a positive tropical anvil cloud area feedback cannot be ruled out. Even though RCE is only applicable to tropical deep‐convective clouds, the RCE total cloud feedback is within the range of prior comprehensive estimates of the global total cloud feedback. This emphasizes that the tropics heavily influence the behavior of global cloud feedbacks and that RCE can be exploited to learn more about how processes related to deep convection control cloud feedbacks. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10477923
- Publisher / Repository:
- Wiley Periodicals LLC on behalf of American Geophysical Union
- Date Published:
- Journal Name:
- Journal of Advances in Modeling Earth Systems
- Volume:
- 15
- Issue:
- 11
- ISSN:
- 1942-2466
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract This study quantifies the contribution of individual cloud feedbacks to the total short‐term cloud feedback in satellite observations over the period 2002–2014 and evaluates how they are represented in climate models. The observed positive total cloud feedback is primarily due to positive high‐cloud altitude, extratropical high‐ and low‐cloud optical depth, and land cloud amount feedbacks partially offset by negative tropical marine low‐cloud feedback. Seventeen models from the Atmosphere Model Intercomparison Project of the sixth Coupled Model Intercomparison Project are analyzed. The models generally reproduce the observed moderate positive short‐term cloud feedback. However, compared to satellite estimates, the models are systematically high‐biased in tropical marine low‐cloud and land cloud amount feedbacks and systematically low‐biased in high‐cloud altitude and extratropical high‐ and low‐cloud optical depth feedbacks. Errors in modeled short‐term cloud feedback components identified in this analysis highlight the need for improvements in model simulations of the response of high clouds and tropical marine low clouds. Our results suggest that skill in simulating interannual cloud feedback components may not indicate skill in simulating long‐term cloud feedback components.more » « less
- 
            Abstract The Radiative‐Convective Equilibrium Model Intercomparison Project (RCEMIP) is an intercomparison of multiple types of numerical models configured in radiative‐convective equilibrium (RCE). RCE is an idealization of the tropical atmosphere that has long been used to study basic questions in climate science. Here, we employ RCE to investigate the role that clouds and convective activity play in determining cloud feedbacks, climate sensitivity, the state of convective aggregation, and the equilibrium climate. RCEMIP is unique among intercomparisons in its inclusion of a wide range of model types, including atmospheric general circulation models (GCMs), single column models (SCMs), cloud‐resolving models (CRMs), large eddy simulations (LES), and global cloud‐resolving models (GCRMs). The first results are presented from the RCEMIP ensemble of more than 30 models. While there are large differences across the RCEMIP ensemble in the representation of mean profiles of temperature, humidity, and cloudiness, in a majority of models anvil clouds rise, warm, and decrease in area coverage in response to an increase in sea surface temperature (SST). Nearly all models exhibit self‐aggregation in large domains and agree that self‐aggregation acts to dry and warm the troposphere, reduce high cloudiness, and increase cooling to space. The degree of self‐aggregation exhibits no clear tendency with warming. There is a wide range of climate sensitivities, but models with parameterized convection tend to have lower climate sensitivities than models with explicit convection. In models with parameterized convection, aggregated simulations have lower climate sensitivities than unaggregated simulations.more » « less
- 
            Abstract Clouds constitute a large portion of uncertainty in predictions of equilibrium climate sensitivity (ECS). While low cloud feedbacks have been the focus of intermodel studies due to their high variability among global climate models, tropical high cloud feedbacks also exhibit considerable uncertainty. Here, we apply the cloud radiative kernel technique of Zelinka et al. to 22 models across the CMIP5 and CMIP6 ensembles to survey tropical high cloud feedbacks and analyze their relationship to ECS. We find that the net high cloud feedback and its altitude and optical depth feedback components are significantly positively correlated with ECS in the tropical mean. On the other hand, the tropical mean high cloud amount feedback is not correlated with ECS. These relationships are most pronounced outside of areas of strong climatological ascent, suggesting the importance of thin cirrus feedbacks. Finally, we explore connections between high cloud feedbacks, climate sensitivity, and mean state high cloud properties. In general, high ECS models are cloudier in the upper troposphere but have a thinner high cloud population. Moreover, we find that having more thin cirrus in the mean state relates to more positive high cloud altitude and optical depth feedbacks, and it either amplifies or dampens the high cloud amount feedback depending on the large-scale dynamical regime (amplifying in descent and dampening in ascent). In summary, our analysis highlights the importance of tropical high cloud feedbacks for driving intermodel spread in ECS and suggests that mean state high cloud characteristics might provide a unique opportunity for observationally constraining high cloud feedbacks. Significance StatementClouds play an important role in modulating the effects of climate change through feedback processes involving changes to their amount, altitude, and opacity. In this study, we seek to understand how changes to tropical high clouds under warming are related to the magnitude of warming that global climate models simulate. We find that tropical high cloud feedbacks robustly relate to the amount of warming a model predicts and that warmer models tend to have a thinner tropical high cloud climatology. Our results highlight a potential opportunity to form a new constraint using these relationships in order to narrow the spread of warming estimates among global climate models.more » « less
- 
            Abstract Studies have implicated the importance of longwave (LW) cloud‐radiative forcing (CRF) in facilitating or accelerating the upscale development of tropical moist convection. While different cloud types are known to have distinct CRF, their individual roles in driving upscale development through radiative feedback is largely unexplored. Here we examine the hypothesis that CRF from stratiform regions has the greatest positive effect on upscale development of tropical convection. We do so through numerical model experiments using convection‐permitting ensemble WRF (Weather Research and Forecasting) simulations of tropical cyclone formation. Using a new column‐by‐column cloud classification scheme, we identify the contributions of five cloud types (shallow, congestus, and deep convective; and stratiform and anvil clouds). We examine their relative impacts on longwave radiation moist static energy (MSE) variance feedback and test the removal of this forcing in additional mechanism‐denial simulations. Our results indicate the importance stratiform and anvil regions in accelerating convective upscale development.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    