skip to main content


This content will become publicly available on May 25, 2024

Title: Biogeography and evolution of social parasitism in Australian Myrmecia bulldog ants revealed by phylogenomics
Studying the historical biogeography and life history transitions from eusocial colony life to social parasitism contributes to our understanding of the evolutionary mechanisms generating biodiversity in eusocial insects. The ants in the genus Myrmecia are a well-suited system for testing evolutionary hypotheses about how their species diversity was assembled through time because the genus is endemic to Australia with the single exception of the species M. apicalis inhabiting the Pacific Island of New Caledonia, and because at least one social parasite species exists in the genus. However, the evolutionary mechanisms underlying the disjunct biogeographic distribution of M. apicalis and the life history transition(s) to social parasitism remain unexplored. To study the biogeographic origin of the isolated, oceanic species M. apicalis and to reveal the origin and evolution of social parasitism in the genus, we reconstructed a comprehensive phylogeny of the ant subfamily Myrmeciinae. We utilized Ultra Conserved Elements (UCEs) as molecular markers to generate a molecular genetic dataset consisting of 2,287 loci per taxon on average for 66 out of the 93 known Myrmecia species as well as for the sister lineage Nothomyrmecia macrops and selected outgroups. Our time-calibrated phylogeny inferred that: (i) stem Myrmeciinae originated during the Paleocene ~ 58 Ma ago; (ii) the current disjunct biogeographic distribution of M. apicalis was driven by long-distance dispersal from Australia to New Caledonia during the Miocene ~ 14 Ma ago; (iii) the single social parasite species, M. inquilina, evolved directly from one of the two known host species, M. nigriceps, in sympatry via the intraspecific route of social parasite evolution; and (iv) 5 of the 9 previously established taxonomic species groups are non-monophyletic. We suggest minor changes to reconcile the molecular phylogenetic results with the taxonomic classification. Our study enhances our understanding of the evolution and biogeography of Australian bulldog ants, contributes to our knowledge about the evolution of social parasitism in ants, and provides a solid phylogenetic foundation for future inquiries into the biology, taxonomy, and classification of Myrmeciinae.  more » « less
Award ID(s):
1943626
NSF-PAR ID:
10478012
Author(s) / Creator(s):
Publisher / Repository:
https://doi.org/10.1016/j.ympev.2023.107825
Date Published:
Journal Name:
Molecular phylogenetics and evolution
Volume:
186
ISSN:
1055-7903
Page Range / eLocation ID:
107825
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Studying the behavioral and life history transitions from a cooperative, eusocial life history to exploitative social parasitism allows for deciphering the conditions under which changes in behavior and social organization lead to diversification. The Holarctic ant genus Formica is ideally suited for studying the evolution of social parasitism because half of its 172 species are confirmed or suspected social parasites, which includes all three major classes of social parasitism known in ants. However, the life history transitions associated with the evolution of social parasitism in this genus are largely unexplored. To test competing hypotheses regarding the origins and evolution of social parasitism, we reconstructed a global phylogeny of Formica ants. The genus originated in the Old World ∼30 Ma ago and dispersed multiple times to the New World and back. Within Formica , obligate dependent colony-founding behavior arose once from a facultatively polygynous common ancestor practicing independent and facultative dependent colony foundation. Temporary social parasitism likely preceded or arose concurrently with obligate dependent colony founding, and dulotic social parasitism evolved once within the obligate dependent colony-founding clade. Permanent social parasitism evolved twice from temporary social parasitic ancestors that rarely practiced colony budding, demonstrating that obligate social parasitism can originate from a facultative parasitic background in socially polymorphic organisms. In contrast to permanently socially parasitic ants in other genera, the high parasite diversity in Formica likely originated via allopatric speciation, highlighting the diversity of convergent evolutionary trajectories resulting in nearly identical parasitic life history syndromes. 
    more » « less
  2. Aim One of the most consistent global biogeographic patterns is the latitudinal diversity gradient where species richness peaks within the equatorial tropics and decreases towards the poles. Here, we explore the global biogeography of socially parasitic ant species, which comprises the most diverse group of social parasites in the Hymenoptera. We test the biogeographic hypothesis that ant social parasites are distributed along an inverse latitudinal diversity gradient (iLDG) by peaking in diversity outside of the equatorial tropics, which would contrast with the biogeographic pattern observed in free-living, non-parasitic ant species. Location Global. Taxon Ants (Hymenoptera: Formicidae). Methods We assembled a comprehensive biogeographic dataset consisting of 6001 geographic distribution records for all 371 taxonomically described socially parasitic ant species. We used phylogenetic and taxonomic studies to estimate the number of independent evolutionary origins of ant social parasitism to directly compare species richness with the number of species representing independent evolutionary origins of social parasitism across a latitudinal gradient. In addition, we compared ant social parasite diversity across biogeographic regions using rarefaction to account for different sampling efforts. Finally, we tested for a correlation between latitude and the proportion of ant social parasite species within regional ant faunae. Results The geographic distribution records and the inferred 91 independent evolutionary origins of socially parasitic life histories in ants show that both species richness and the number of species representing independent evolutionary origins of social parasitism peak in the northern hemisphere outside of the equatorial tropics. Based on rarefaction curves, northern latitude regions harbour the most ant social parasite species, but the diversity of independent evolutionary origins is not significantly different between northern and southern hemispheres. The proportion of ant social parasite species within regional faunae is tightly correlated with latitude only in the northern hemisphere. Main conclusions The iLDG of ant social parasites contrasts with the biogeographic pattern observed in free-living, non-parasitic ant species and appears to be driven by large species radiations as well as by the presence of specialized life histories exclusive to the northern hemisphere. 
    more » « less
  3. Abstract

    Social parasites exploit the brood care behavior of their hosts to raise their own offspring. Social parasites are common among eusocial Hymenoptera and exhibit a wide range of distinct life history traits in ants, bees, and wasps. In ants, obligate inquiline social parasites are workerless (or nearly-so) species that engage in lifelong interactions with their hosts, taking advantage of the existing host worker forces to reproduce and exploit host colonies’ resources. Inquiline social parasites are phylogenetically diverse with approximately 100 known species that evolved at least 40 times independently in ants. Importantly, ant inquilines tend to be closely related to their hosts, an observation referred to as ‘Emery’s Rule’. Polygyny, the presence of multiple egg-laying queens, was repeatedly suggested to be associated with the origin of inquiline social parasitism, either by providing the opportunity for reproductive cheating, thereby facilitating the origin of social parasite species, and/or by making polygynous species more vulnerable to social parasitism via the acceptance of additional egg-laying queens in their colonies. Although the association between host polygyny and the evolution of social parasitism has been repeatedly discussed in the literature, it has not been statistically tested in a phylogenetic framework across the ants. Here, we conduct a meta-analysis of ant social structure and social parasitism, testing for an association between polygyny and inquiline social parasitism with a phylogenetic correction for independent evolutionary events. We find an imperfect but significant over-representation of polygynous species among hosts of inquiline social parasites, suggesting that while polygyny is not required for the maintenance of inquiline social parasitism, it (or factors associated with it) may favor the origin of socially parasitic behavior. Our results are consistent with an intra-specific origin model for the evolution of inquiline social parasites by sympatric speciation but cannot exclude the alternative, inter-specific allopatric speciation model. The diversity of social parasite behaviors and host colony structures further supports the notion that inquiline social parasites evolved in parallel across unrelated ant genera in the formicoid clade via independent evolutionary pathways.

     
    more » « less
  4. Abstract

    Using genetic, morphological, and geographical evidence, we investigate the species-level taxonomy and evolutionary history of the Pseudomyrmex elongatulus group, a clade of ants distributed from southwestern United States to Costa Rica. Through targeted enrichment of 2,524 UCE (ultraconserved element) loci we generate a phylogenomic data set and clarify the phylogenetic relationships and biogeographic history of these ants. The crown group is estimated to have originated ~8 Ma, in Mexico and/or northern Central America, and subsequently expanded into southern Central America and the southwestern Nearctic. The P. elongatulus group contains a mix of low- and high-elevation species, and there were apparently multiple transitions between these habitat types. We uncover three examples of one species—of restricted or marginal geographical distribution—being embedded phylogenetically in another species, rendering the latter paraphyletic. One of these cases involves an apparent workerless social parasite that occurs sympatrically with its parent species, with the latter serving as host. This suggests a sympatric origin of the parasite species within the distribution range of its host. Species boundaries are tested using three molecular delimitation approaches (SODA, bPTP, BPP) but these methods generate inflated species estimates (26–46 species), evidently because of a failure to distinguish population structure from species differences. In a formal taxonomic revision of the P. elongatulus group, based on almost 3,000 specimens from ~625 localities, we allow for geographic variation within species and we employ distinctness-in-sympatry criteria for testing hypotheses about species limits. Under these guidelines we recognize 13 species, of which nine are new: P. arcanus, sp. nov. (western Mexico); P. capillatus, sp. nov. (western Mexico); P. cognatus, sp. nov. (Chiapas, Mexico to Nicaragua); P. comitator, sp. nov. (Chiapas, Mexico); P. ereptor, sp. nov. (Veracruz, Mexico); P. exoratus, sp. nov. (southeastern Mexico, Honduras); P. fasciatus, sp. nov. (Chiapas, Mexico to Costa Rica); P. nimbus, sp. nov. (Costa Rica); and P. veracruzensis, sp. nov. (Veracruz, Mexico). Our study highlights the value of combining phylogenomic, phenotypic, and geographical data to resolve taxonomic and evolutionary questions.

     
    more » « less
  5. Abstract

    Fungus‐farming ants (Hymenoptera: Formicidae) have become model systems for exploring questions regarding the evolution of symbiosis. However, robust phylogenetic studies of both the ant agriculturalists and their fungal cultivars are necessary for addressing whether or not observed ant–fungus associations are the result of coevolution and, if so, whether that coevolution has been strict or diffuse. Here we focus on the evolutionary relationships of the species within the ant genusMyrmicocryptaand of their fungal cultivars. The fungus‐farming ant genusMyrmicocryptawas created by Fr. Smith in 1860 based on a single alate queen. Since then, 31 species and subspecies have been described. Until now, the genus has not received any taxonomic treatment and the relationships of the species within the genus have not been tested. Our molecular analyses, using ∼40 putative species and six protein‐coding (nuclear and mitochondrial) gene fragments, recoverMyrmicocryptaas monophyletic and as the sister group of the genusMycocepurusForel. The speciesM. tuberculataWeber is recovered as the sister to the rest ofMyrmicocrypta. The time‐calibrated phylogeny recovers the age of stem groupMyrmicocryptaplus its sister group as 45 Ma, whereas the inferred age for the crown groupMyrmicocryptais recovered as 27 Ma. Ancestral character‐state analyses suggest that the ancestor ofMyrmicocryptahad scale‐like or squamate hairs and that, although such hairs were once considered diagnostic for the genus, the alternative state of erect simple hairs has evolved at least seven independent times. Ancestral‐state analyses of observed fungal cultivar associations suggest that the most recent common ancestor ofMyrmicocryptacultivated clade 2 fungal species and that switches to clade 1 fungi have occurred at least five times. It is our hope that these results will encourage additional species‐level phylogenies of fungus‐farming ants and their fungal cultivars, which are necessary for understanding the evolutionary processes that gave rise to agriculture in ants and that produced the current diversity of mutualistic ant–fungus interactions.

     
    more » « less