skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: MIMO YOLO - A Multiple Input Multiple Output Model for Automatic Cell Counting
Across basic research studies, cell counting requires significant human time and expertise. Trained experts use thin focal plane scanning to count (click) cells in stained biological tissue. This computer-assisted process (optical disector) requires a well-trained human to select a unique best z-plane of focus for counting cells of interest. Though accurate, this approach typically requires an hour per case and is prone to inter-and intra-rater errors. Our group has previously proposed deep learning (DL)-based methods to automate these counts using cell segmentation at high magnification. Here we propose a novel You Only Look Once (YOLO) model that performs cell detection on multi-channel z-plane images (disector stack). This automated Multiple Input Multiple Output (MIMO) version of the optical disector method uses an entire z-stack of microscopy images as its input, and outputs cell detections (counts) with a bounding box of each cell and class corresponding to the z-plane where the cell appears in best focus. Compared to the previous segmentation methods, the proposed method does not require time-and labor-intensive ground truth segmentation masks for training, while producing comparable accuracy to current segmentation-based automatic counts. The MIMO-YOLO method was evaluated on systematic-random samples of NeuN-stained tissue sections through the neocortex of mouse brains (n=7). Using a cross validation scheme, this method showed the ability to correctly count total neuron numbers with accuracy close to human experts and with 100% repeatability (Test-Retest).  more » « less
Award ID(s):
1926990
NSF-PAR ID:
10478139
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
2023 IEEE 36th International Symposium
Page Range / eLocation ID:
827 to 831
Subject(s) / Keyword(s):
["Training","Image segmentation","Biomedical optical imaging","Three-dimensional displays","Microscopy","Neurons","Optical imaging"]
Format(s):
Medium: X
Location:
L'Aquila, Italy
Sponsoring Org:
National Science Foundation
More Like this
  1. Stereology-based methods provide the current state-of-the-art approaches for accurate quantification of numbers and other morphometric parameters of biological objects in stained tissue sections. The advent of artificial intelligence (AI)-based deep learning (DL) offers the possibility of improving throughput by automating the collection of stereology data. We have recently shown that DL can effectively achieve comparable accuracy to manual stereology but with higher repeatability, improved throughput, and less variation due to human factors by quantifying the total number of immunostained cells at their maximal profile of focus in extended depth of field (EDF) images. In the first of two novel contributions in this work, we propose a semi-automatic approach using a handcrafted Adaptive Segmentation Algorithm (ASA) to automatically generate ground truth on EDF images for training our deep learning (DL) models to automatically count cells using unbiased stereology methods. This update increases the amount of training data, thereby improving the accuracy and efficiency of automatic cell counting methods, without a requirement for extra expert time. The second contribution of this work is a Multi-channel Input and Multi-channel Output (MIMO) method using a U-Net deep learning architecture for automatic cell counting in a stack of z-axis images (also known as disector stacks). This DL-based digital automation of the ordinary optical fractionator ensures accurate counts through spatial separation of stained cells in the z-plane, thereby avoiding false negatives from overlapping cells in EDF images without the shortcomings of 3D and recurrent DL models. The contribution overcomes the issue of under-counting errors with EDF images due to overlapping cells in the z-plane (masking). We demonstrate the practical applications of these advances with automatic disector-based estimates of the total number of NeuN-immunostained neurons in a mouse neocortex. In summary, this work provides the first demonstration of automatic estimation of a total cell number in tissue sections using a combination of deep learning and the disector-based optical fractionator method. 
    more » « less
  2. Tomaszewski, John E. ; Ward, Aaron D. (Ed.)
    Automatic cell quantification in microscopy images can accelerate biomedical research. There has been significant progress in the 3D segmentation of neurons in fluorescence microscopy. However, it remains a challenge in bright-field microscopy due to the low Signal-to-Noise Ratio and signals from out-of-focus neurons. Automatic neuron counting in bright-field z-stacks is often performed on Extended Depth of Field images or on only one thick focal plane image. However, resolving overlapping cells that are located at different z-depths is a challenge. The overlap can be resolved by counting every neuron in its best focus z-plane because of their separation on the z-axis. Unbiased stereology is the state-of-the-art for total cell number estimation. The segmentation boundary for cells is required in order to incorporate the unbiased counting rule for stereology application. Hence, we perform counting via segmentation. We propose to achieve neuron segmentation in the optimal focal plane by posing the binary segmentation task as a multi-class multi-label task. Also, we propose to efficiently use a 2D U-Net for inter-image feature learning in a Multiple Input Multiple Output system that poses a binary segmentation task as a multi-class multi-label segmentation task. We demonstrate the accuracy and efficiency of the MIMO approach using a bright-field microscopy z-stack dataset locally prepared by an expert. The proposed MIMO approach is also validated on a dataset from the Cell Tracking Challenge achieving comparable results to a compared method equipped with memory units. Our z-stack dataset is available at 
    more » « less
  3. null (Ed.)
    Introduction: Vaso-occlusive crises (VOCs) are a leading cause of morbidity and early mortality in individuals with sickle cell disease (SCD). These crises are triggered by sickle red blood cell (sRBC) aggregation in blood vessels and are influenced by factors such as enhanced sRBC and white blood cell (WBC) adhesion to inflamed endothelium. Advances in microfluidic biomarker assays (i.e., SCD Biochip systems) have led to clinical studies of blood cell adhesion onto endothelial proteins, including, fibronectin, laminin, P-selectin, ICAM-1, functionalized in microchannels. These microfluidic assays allow mimicking the physiological aspects of human microvasculature and help characterize biomechanical properties of adhered sRBCs under flow. However, analysis of the microfluidic biomarker assay data has so far relied on manual cell counting and exhaustive visual morphological characterization of cells by trained personnel. Integrating deep learning algorithms with microscopic imaging of adhesion protein functionalized microfluidic channels can accelerate and standardize accurate classification of blood cells in microfluidic biomarker assays. Here we present a deep learning approach into a general-purpose analytical tool covering a wide range of conditions: channels functionalized with different proteins (laminin or P-selectin), with varying degrees of adhesion by both sRBCs and WBCs, and in both normoxic and hypoxic environments. Methods: Our neural networks were trained on a repository of manually labeled SCD Biochip microfluidic biomarker assay whole channel images. Each channel contained adhered cells pertaining to clinical whole blood under constant shear stress of 0.1 Pa, mimicking physiological levels in post-capillary venules. The machine learning (ML) framework consists of two phases: Phase I segments pixels belonging to blood cells adhered to the microfluidic channel surface, while Phase II associates pixel clusters with specific cell types (sRBCs or WBCs). Phase I is implemented through an ensemble of seven generative fully convolutional neural networks, and Phase II is an ensemble of five neural networks based on a Resnet50 backbone. Each pixel cluster is given a probability of belonging to one of three classes: adhered sRBC, adhered WBC, or non-adhered / other. Results and Discussion: We applied our trained ML framework to 107 novel whole channel images not used during training and compared the results against counts from human experts. As seen in Fig. 1A, there was excellent agreement in counts across all protein and cell types investigated: sRBCs adhered to laminin, sRBCs adhered to P-selectin, and WBCs adhered to P-selectin. Not only was the approach able to handle surfaces functionalized with different proteins, but it also performed well for high cell density images (up to 5000 cells per image) in both normoxic and hypoxic conditions (Fig. 1B). The average uncertainty for the ML counts, obtained from accuracy metrics on the test dataset, was 3%. This uncertainty is a significant improvement on the 20% average uncertainty of the human counts, estimated from the variance in repeated manual analyses of the images. Moreover, manual classification of each image may take up to 2 hours, versus about 6 minutes per image for the ML analysis. Thus, ML provides greater consistency in the classification at a fraction of the processing time. To assess which features the network used to distinguish adhered cells, we generated class activation maps (Fig. 1C-E). These heat maps indicate the regions of focus for the algorithm in making each classification decision. Intriguingly, the highlighted features were similar to those used by human experts: the dimple in partially sickled RBCs, the sharp endpoints for highly sickled RBCs, and the uniform curvature of the WBCs. Overall the robust performance of the ML approach in our study sets the stage for generalizing it to other endothelial proteins and experimental conditions, a first step toward a universal microfluidic ML framework targeting blood disorders. Such a framework would not only be able to integrate advanced biophysical characterization into fast, point-of-care diagnostic devices, but also provide a standardized and reliable way of monitoring patients undergoing targeted therapies and curative interventions, including, stem cell and gene-based therapies for SCD. Disclosures Gurkan: Dx Now Inc.: Patents & Royalties; Xatek Inc.: Patents & Royalties; BioChip Labs: Patents & Royalties; Hemex Health, Inc.: Consultancy, Current Employment, Patents & Royalties, Research Funding. 
    more » « less
  4. Abstract Many studies of brain aging and neurodegenerative disorders such as Alzheimer’s and Parkinson’s diseases require rapid counts of high signal: noise (S:N) stained brain cells such as neurons and neuroglial (microglia cells) on tissue sections. To increase throughput efficiency of this work, we have combined deep learned (DL) neural networks and computerized stereology (DL-stereology) for automatic cell counts with low error (<10%) compared to time-intensive manual counts. To date, however, this approach has been limited to sections with a single high S:N immunostain for neurons (NeuN) or microglial cells (Iba-1). The present study expands this approach to protocols that combine immunostains with counterstains, e.g., cresyl violet (CV). In our method, a stain separation technique called Sparse Non-negative Matrix Factorization (SNMF) converts a dual-stained color image to a single gray image showing only the principal immunostain. Validation testing was done using semi- and automatic stereology-based counts of sections immunostained for neurons or microglia with CV counterstaining from the neocortex of a transgenic mouse model of tauopathy (Tg4510 mouse) and controls. Cell count results with principal stain gray images show an average error rate of 16.78% and 28.47% for the semi-automatic approach and 8.51% and 9.36% for the fully-automatic DL-stereology approach for neurons and microglia, respectively, as compared to manual cell counts (ground truth). This work indicates that stain separation by SNMF can support high throughput, fully automatic DL-stereology based counts of neurons and microglia on counterstained tissue sections. 
    more » « less
  5. We present a new annotated microscopic cellular image dataset to improve the effectiveness of machine learning methods for cellular image analysis. Cell counting is an important step in cell analysis. Typically, domain experts manually count cells in a microscopic image. Automated cell counting can potentially eliminate this tedious, time-consuming process. However, a good, labeled dataset is required for training an accurate machine learning model. Our dataset includes microscopic images of cells, and for each image, the cell count and the location of individual cells. The data were collected as part of an ongoing study investigating the potential of electrical stimulation to modulate stem cell differentiation and possible applications for neural repair. Compared to existing publicly available datasets, our dataset has more images of cells stained with more variety of antibodies (protein components of immune responses against invaders) typically used for cell analysis. The experimental results on this dataset indicate that none of the five existing models under this study are able to achieve sufficiently accurate count to replace the manual methods. The dataset is available at https://figshare.com/articles/dataset/Dataset/21970604. 
    more » « less