Abstract BackgroundPronounced asymmetric changes in ocular globe size during eye development have been observed in a number of species ranging from humans to lizards. In contrast, largely symmetric changes in globe size have been described for other species like rodents. We propose that asymmetric changes in the three‐dimensional structure of the developing eye correlate with the types of retinal remodeling needed to produce areas of high photoreceptor density. To test this idea, we systematically examined three‐dimensional aspects of globe size as a function of eye development in the bifoveated brown anole,Anolis sagrei. ResultsDuring embryonic development, the anole eye undergoes dynamic changes in ocular shape. Initially spherical, the eye elongates in the presumptive foveal regions of the retina and then proceeds through a period of retraction that returns the eye to its spherical shape. During this period of retraction, pit formation and photoreceptor cell packing are observed. We found a similar pattern of elongation and retraction associated with the single fovea of the veiled chameleon,Chamaeleo calyptratus. ConclusionsThese results, together with those reported for other foveated species, support the idea that areas of high photoreceptor packing occur in regions where the ocular globe asymmetrically elongates and retracts during development. 
                        more » 
                        « less   
                    
                            
                            Dynamic changes in ocular shape during human development and its implications for retina fovea formation
                        
                    
    
            Abstract The human fovea is known for its distinctive pit‐like appearance, which results from the displacement of retinal layers superficial to the photoreceptors cells. The photoreceptors are found at high density within the foveal region but not the surrounding retina. Efforts to elucidate the mechanisms responsible for these unique features have ruled out cell death as an explanation for pit formation and changes in cell proliferation as the cause of increased photoreceptor density. These findings have led to speculation that mechanical forces acting within and on the retina during development underly the formation of foveal architecture. Here we review eye morphogenesis and retinal remodeling in human embryonic development. Our meta‐analysis of the literature suggests that fovea formation is a protracted process involving dynamic changes in ocular shape that start early and continue throughout most of human embryonic development. From these observations, we propose a new model for fovea development. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1827647
- PAR ID:
- 10478162
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- BioEssays
- Volume:
- 46
- Issue:
- 1
- ISSN:
- 0265-9247
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            IntroductionConsidering the significant role played by both intrinsic and extrinsic electric fields in the growth and maturation of the central nervous system, the impact of short exposure to external electric fields on the development and differentiation of retinal organoids was investigated. MethodsRetinal organoids derived from human embryonic stem cells were used at day 80, a key stage in their differentiation. A single 60-minute exposure to a biphasic electrical field was administered to assess its influence on retinal cell populations and maturation markers. Immunohistochemistry, qPCR, and RNA sequencing were employed to evaluate cell type development and gene expression changes. ResultsElectrical stimulation significantly enhanced neuronal development and increased the population of photoreceptors within the organoids. RNA sequencing data showed upregulated expression of genes related to rod photoreceptors, Müller cells, horizontal cells, and amacrine cells, while genes associated with retinal pigment epithelium and retinal ganglion cells were downregulated. Variations in development and maturation were observed depending on the specific parameters of the applied electric field. DiscussionThese findings highlight the significant impact of extrinsic electrical fields on early retinal development and suggest that optimizing electrical field parameters could effectively address certain limitations in retinal organoid technology, potentially reducing the reliance on chemicals and small molecules.more » « less
- 
            In prior art, advances in adaptive optics scanning laser ophthalmoscope (AOSLO) technology have enabled cones in the human fovea to be resolved in healthy eyes with normal vision and low to moderate refractive errors, providing new insight into human foveal anatomy, visual perception, and retinal degenerative diseases. These high-resolution ophthalmoscopes require careful alignment of each optical subsystem to ensure diffraction-limited imaging performance, which is necessary for resolving the smallest foveal cones. This paper presents a systematic and rigorous methodology for building, aligning, calibrating, and testing an AOSLO designed for imaging the cone mosaic of the central fovea in humans with cellular resolution. This methodology uses a two-stage alignment procedure and thorough system testing to achieve diffraction-limited performance. Results from retinal imaging of healthy human subjects under 30 years of age with refractive errors of less than 3.5 diopters using either 680 nm or 840 nm light show that the system can resolve cones at the very center of the fovea, the region where the cones are smallest and most densely packed.more » « less
- 
            Adaptive optics imaging has enabled the enhanced in vivo retinal visualization of individual cone and rod photoreceptors. Effective analysis of such high-resolution, feature rich images requires automated, robust algorithms. This paper describes RC-UPerNet, a novel deep learning algorithm, for identifying both types of photoreceptors, and was evaluated on images from central and peripheral retina extending out to 30° from the fovea in the nasal and temporal directions. Precision, recall and Dice scores were 0.928, 0.917 and 0.922 respectively for cones, and 0.876, 0.867 and 0.870 for rods. Scores agree well with human graders and are better than previously reported AI-based approaches.more » « less
- 
            Bioengineering systems have transformed scientific knowledge of cellular behaviors in the nervous system (NS) and pioneered innovative, regenerative therapies to treat adult neural disorders. Microscale systems with characteristic lengths of single to hundreds of microns have examined the development and specialized behaviors of numerous neuromuscular and neurosensory components of the NS. The visual system is comprised of the eye sensory organ and its connecting pathways to the visual cortex. Significant vision loss arises from dysfunction in the retina, the photosensitive tissue at the eye posterior that achieves phototransduction of light to form images in the brain. Retinal regenerative medicine has embraced microfluidic technologies to manipulate stem-like cells for transplantation therapies, where de/differentiated cells are introduced within adult tissue to replace dysfunctional or damaged neurons. Microfluidic systems coupled with stem cell biology and biomaterials have produced exciting advances to restore vision. The current article reviews contemporary microfluidic technologies and microfluidics-enhanced bioassays, developed to interrogate cellular responses to adult retinal cues. The focus is on applications of microfluidics and microscale assays within mammalian sensory retina, or neuro retina, comprised of five types of retinal neurons (photoreceptors, horizontal, bipolar, amacrine, retinal ganglion) and one neuroglia (Müller), but excludes the non-sensory, retinal pigmented epithelium.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
